AD=AG89 090 CALJFORNIA UNIV IRVINE DEPT OF INFORMATION AND COMP==ETC F/6 9/2
OCEEDINGS OF THE IRVINE WORKSHOP ON ALTERNATIVES FOR THE ENVI--ETC(U)
T A STANDISH DAA629-7G-“-0219
UNCLASSIFIED UCI-ICS-7B-BS

. IINENNENEEEE

"m 10 & e g2
““l T

= [1E2
flizs flie e

MICROCOPY RESOLUTION TEST CHART

A LOS S

. ,____! g
RN
2=\
Proceedings of the

IRVINE WORKSHOP

on Alternatives for

the Environment, Certification, and Control
of the

DOD Common High Order Language

june 20-22,1978
University of California at Irvine

AD A089090

DTIC

| ELECTE
| Sssmow

- CO~SPONSORED BY THE
U.S. Army, U.S, Navy, U.S. AIR Force

AND THE
| g IRVINE COMPUTER SCIENCE DEPARTMENT
DISTRIB
.'::‘J Approved for public releass;
‘ & Distribution Unlimited '

LY

— w3 =en |

SECURITY CL }ﬁl FICATION OF THIS PAGE (When Dete Ent = . -,
< : ' D CTIO - -
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

T RE NUMBER OOVY ACCESSION NOJ 3. PEGWLIENT'S CATALOG NUMBER
Cs-78~143 v’ ﬁ_fi ﬁo?q df (q)

~" ﬁ s " M ~ - —," J1
PROCEEDINGS OF THE }VINE yQRK.SHOP ON QLTERNATIVE v

OR THE IRO TIFICATION, AND CONTROL

OF THE DOD COMMON HIG ‘ORDER LANGUAGE ol a o
g /e -%4 Ly "" Koaar. Y.
\‘
ZStandish I(veditor) (!5

9. PERFORMING ORGANIZATION NAME AND ADDRE 10. PIOGRM ELEMENT, PROJECT, TASK
Computer Science Department AREA S WORK UNIT NUNBERS
University of California at Irvine
Irvine, California 92717

V1. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DA ' 7

U.S. ARMY RESEARCH OFFICE, PO BOX 12211 JUNE 20-22/ 1978 ;

KESEARCH TRIANGLE PARK 13. NUMBER OF PAGES ;
NORTH CAROLINA 27709 358 _
TEMONITORING AGENCY NAME & WT 15 SECURITY CLASS. (of this report) i 3

- r | UNCLASSIFIED

i+ uctT TCSY - o]

‘ - DECT ASHIFICATION/ COWNGRADING :

R —~4— SCHEDULE i

6. DISTRIBUTION STATuEHT (el thia Report)

This document is approved for public release and sale;

distribution is unlimited This document may be reproduced for any purpose of
the United States Government.

17. DISTRIDUTION STATEMENT (of the adetract entered in floek 20, i ditferent from Repert)

- s o

18. SUPPLEMENTARY NOTES 4 \

- e e o o o

19. KEY WOROS (Conti on re olde it 'y and identify by block number)

Ada Environment, Programming Language Standardization, Programming

Language Specification, Program Verification Technology, Compiler

Validation Technology, Compile Time Tools, Requirements Apalysis,

/ System Design, Program Documentation, Program Maintenance,

Software Test and Measurement, Pro

0. AGS CT (Continue en olde y end {dontify by Sleck manbes)
Th oceedings contain. edited transcripts and position papers presented

Workshop on Alternatives for the Environment, Certification, and

Control of the DoD Common High Order Language (Ada), . held June 20-22, 1978
at the Irvine campus of the University of California’s Topics discussed
include: experience in language standardization, technology for language
specification, verification technology, compile time tools, supporting a h/

3
3
%

programming language culture, requirements analysis, system dnign, programs
documentation wainte

W
137 MT3] comon or 1 wov es 13 oesoLeTe UNCLASSIFIED i/o g6 ? Jat
eErHMTY CLASHFICATION OF THIS PAGE (When Dete

Proceedings of the

IRVINE WORKSHOP

on Alternatives for

the Environment, Certification, and Control
of the

DOD Common High Order Language

June 20-22 1978
University of California at Irvine

s Ca RS R Y L T - .)

DrH @ 29-28-M=-02/9
(R

CO-SPONSORED BY THE | Fccession For g
U.S. Army, U.S. Navy, U.S. AR Force ‘;‘.“.”'nf"**‘
AND THE \ NPT 1L |

.eastion

IRVINE CoMPUTER SCIENCE DEPARTMENT — iﬁﬁa ton E

rivuviop/

_teoi'nbility Cedes

Availand/or [
‘ O ial
!

i

| 3
¥
3 -
‘. ;
¢

!
‘o -wpa—-— R - NS AN A S BRI, Vi e e = e -

T,

Source of Support and Notices

The Workshop and the publication of the Workshop Proceedings
were supported by the United States Army under contract DAAG29-78-M-0219.

The views, opinions, and/or findings contained in this report
are those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so
designated by other documentation.

Note to Header Added in Proof

Throughout the transeripts, the Workshop participants used
the name "DOD1" to refer informally to the DoD Common High Order
Language. As noted by Col. Whitaker in his Opening Session Address,
"DOD1" was not the name of the language at the time the Workshop
wag held, nor has it ever been the name of the language. Since
the end of the Workshop, the name Ada has been chosen as the name
for the common language. This homors Ada Agusta, the Countess of
Lovelace, the daughter of the poet Lord Byron, and Babbage's
"ppogrammer.” For reasons of historical accuracy, the use of
the working title "DOD1" has been retained in the transcripts. The
reader should be aware, however, that the participants were informed
by Col. Whitaker and were aware that "DOD1" was not the official name,
and that they used "DOD1" as a term of convenience only 1in the ’
abgence of any other suitable working designation. 1

CopyRIGHT (C) 1978, THoMas A. STANDISH, ALL RIGHTS RESERVED

EXCEPT AS FOLLOWS:

This document may be reproduced for any purpose of
the United States Government.

Table of Contents

Acknowledgments i
. Introduction 1
Opening Session A
* Session 1A: Experience in Language Standardization 1%
ﬁ Session 2A: Technnloqy for Language Specification 25
Session 3A: Verification Technology, Present & Future 38
Session 4A: Technology for Compiler Validation 52
Session S5A: Compile Time Tools 5¢@
Session AA: Supporting a Flourishing Language Culture 73
Session 1B: Requirements Analysis ‘ an 3
Session 2B: System Design ' 100 ;
Session 38: Program Documentation 116 ;
Session 4B: Program Development Systems 125
Session 5B: Program Maintenance 139
Session 6B: Test and Measurement 149
Session 1C: Training and Education 158
Position Papers .
Position Paper --- Richard N, Taylor

Position Paper --- .JTohn Burgey, .John Machado,
John Perry, and Patricia Santoni

Levels of Program Nehugging ~-- Robert Balzer

Maintenance --- Robhert Balzer

Toward Self-Documenting Programs --~ Edward A. Taft

Acknowledgments

Many fine people deserve credit for contributing to the
success of the Workshop and to the preparation of the
Proceedings.

Most deserving of praise are Mary Kay Clarke, Secretary
to the Chair, and Phyllis Siegel, Administrative Assistant,
both of the Irvine Computer Science Department. Mary Kay
and Phyllis arranged the Workshop facilities, planned the
meals and refreshments, handled mailinas and travel
arrangements for participants, handled finances, and spent
the summer typing transcripts. Their skill and devotion are
the principal factnrs that contributed to the success of the
entire undertaking.

Katie Heap and Randi Steinman of the "C Trvine
Conference Office were most helpful in arrangina on-campus
lodging, providing audio-visual aids, and reserving Workshop
conference Yoons. Alexander Hu, Dennis Kibler, Craiq
Taylor, and David Smith helped run the audio-visual
equipment during the working sessions and were responsible
for taping the conversations and presentations.

A nunber of good people in and surrounding the military
services were marvelously supportive and helpful in
arranging financial support for the Workshop and in planning
the Workshop Agenda. These include Warren Loper, Sam
DiNitto, Jim Wagner, Russ Eyres, Dave Fisher, Bill Whitaker,
and Jimmy Suttle.

With regard to the Proceedings, we should have known we
were in for trouble when we were unsuccessful in hiring
courtroom stenographers to produce the transcripts of the
Workshop sessions. That the stenographers wanted $75 per
hour was no problem --- we had long since resigned ourselves
to the notion that anybody connected with the 1leqgal
profession would charge totally outrageous fees and we were
prepared to pay through the nose in the fine company of
others of our suffering countrymen. The probhlem we could
not surmount was that the stenographers flatly refused to
transcribe technical material (thongh how it is that leqal
jargon 1is 1less technical than that - of computer science
completely escapes us). Faced with their refusal, we asked
"nid they know something we didn't know?"

We had foreseen that there would he problems with
non-technical - people trying to transcribe technical jargon,
and we were prepared to see "Wirth's Euler” come out as
"worth's oiler®" and to see "BNF” come out as "B&F" in the
draft transcripts. These mninor irritants we thought we
could expunge with a few magic TECO macros once the
transcripts were captured in the computer. Alas, the
computer went down in mid-summer to get an enlarqged memory,
and we badly underestimated the magnitude and difficulty of
the task. Furthermore, our recording technique was less
than flawless.

- ii -

It took all summer to get the transcripts typed. Mary
Kay Clarke, Tammy Feldman, Shirley Rasmussen, and Alexander
Hu stuck with it to the bitter end. Tammy Feldman's
extraordinary intelligence and cdevotion 1led to very high
quality draft transcripts and her quiet competence deserves
the warmest praise. We repeatedly hired outside help to
speed up the process, hut they repeatedly quit after a week
of our special bhrand of secretarial torture.

By Sept. 3, we had a four inch stack of draft
transcripts completed, and we mailed out a four foot stack
of them to the Workshop participants for editing. We got
back three feet of edited transcripts by the end of October.

Now it was time for the suffering to penetrate other
layers of our Department as we attempted to boil down each
session into eight to twelve pages of the best nmnaterial.
This called for help from technically qualified people who
could judge relevance and interest, who could compress
detail, and who could turn informal, run-on conversation
into legible English. While some semantic distortion is
inevitable in this process, the crew that we had working on
it did a splendid job, and we believe we have minimized the
semantic distortion that could have resulted had less
capable people been involved. 1In this phase, Jim Meehan of
the 1Irvine Computer Science faculty, and Irvine graduate
students Paul Mockapetris, Ashok Viswanathan, W®avid Smith,
Essam Hosny, and Gene Fisher were each indispensable. fiene
Fisher deserves special praise for his superlative
contributions at this stage.

Thouas A Chufiil.

Thomas A. Standish
Workshop Coordinator

-

Introduction to the Workshop Proceedings
by
Thomas A. Standish
Workshop Coordinator

It is tempting to begin this Introduction with a
Lincolnesque prediction that history will little note nor
long remember what we did at this Workshop.

The Workshop was hastily organized under pressure to
provide timely input and advice to a preliminary staqe of
the PEBBLEMAN environment requirements process. There was
insufficient time for the participants to prepare careful
advance technical papers for presentation. So, for the most
part, the participants came equipped only with their own
experiences, and with attitudes of cheerful curiosity, a
desire to help, and a zest for exploration of new issues.

Everyone seemed aware that we were getting our toes wet
together in a new and profound bunch of issues that needed
careful thinking and that needed the best in wisdom we were
able to provide. In retrospect, the fact that so many of
the participants did not prepare technical papers for
delivery, and so were not in an ego-involved mode of pushing
their own intellectual wares, 1led to a spirit of
cooperation, open-mindedness, and eagerness for learning
that seemed, at times, quite magical --- especially given
the tri-lateral, military-industrial-academic origins of the

participants. In fact, as the reader will note, the spirit :

of the Proceedings is remarkable for the conspicuous absence
of traditional chips on traditional shoulders.

What emerged, then, was an astonishingly bhroad range of
coverage of interesting issues with interesting
observations, data, experience, and ideas cominqg from many
origins., The Proceedings capture for the reader a qood deal
of the richness of what was discussed, and they are
remarkable for their scope of coverage. 1In my judgment, the
Proceedings contain a tremendous amount of fertile thought,
and constitute essential reading for anyone attempting to
acquire the "background context”™ or to "get spun up" in
environment issues. Most importantly. perhaps, the
Proceedings will help to sensitize the reader to the
staggering breadth of issues that need to be considered in
the environment requirements process.

So perhaps the Lincolnesque view of the Workshop is a
bit too modest. While they may not be earthshaking, the
Proceedings capture for the benefit of those not present,
one of the first attempts of a tri-lateral qroup of
participants to come to grips with environment issues, and
they record some of the spirit of the social interactions as
well as the ideas and experience generated by this unique
group addressing this unique set of issues for the first
time. It does not take too much crystal ball gazing to see
that environment issues will become increasingly prominent
in the 1980s. Thus, if you were not there, the Proceedings

g,

2

capture for you some first attempts to embark on development
of the Environment as a coherent, new subfield of
investigation in Computer Science. :

The Workshop was organized around two series of six
parallel sessions. These parallel series consisted of the
"A" Sessions (1A, 2A, ..., 6AA) dealing with lanquaqge
standardization and specification, compiler validation and
verification, and support of language cultures, and the "B"
Sessions (1B 2B ..., 6B) dealing with software life cycle
issues (requirements analysis, design, documentation,
program development systems, maintenance, testing, and
measurement). A few interested participants formed a third
parallel series, the "C" Sessions, one of which dealt with
training and education and one of which dealt with the
social settings in which wuse of the Common Language is
likely to take place. 1In addition to the parallel sessions,
warren Teitelman of XEROX PARC presented a color-TV film
illustrating use of the INTERLISP programming environment
before a joint session of the entire Workshop.

The conversations that took place during all of the
working sessions (except that on social settings) were
recorded and transcribed, and the participants were invited
to return edited transcripts for consideration for inclusion
in the Workshop Proceedings. Of necessity, these edited
transcripts had to be compressed quite a bit to form a
product of manageable size, It is 1inevitable that some
semantic distortion has crept into these summarized, edited
remarks, due to technical errors in transcription, 1loss of
material through summarization, and the semantic maneuvaring
needed to turn spoken dialogue into legible English.
Nonetheless, the flavor of what was said seems to have been
captured moderately faithfully even if the individual
wording has been markedly changed from the original, in some
cases.

In an ideal world, we would have liked to submit the
current transcripts to the participants for a final round of
editing, but time has prevented us from taking this 1last
step. Thus, we apologize, in advance, to those whose
remarks got twisted beyond recognition or taken totally out
of context, and to those into whose mouths we placed words
they did not speak in order to smooth the flow of the
conversation and render the written transcripts legible. We
hope those so victimized will trust that we had no malice in
our hearts as we struggled to produce a legible product.

The participants were invited to bring "position
papers" to the Workshop and to submit them for publication
in the Proceedings. A number of these have been reproduced
in the second part of this volume. In some cases, the
position papers were written at night during the Workshop.
In one case, position papers covering the ideas qenerated in
the Parallel "C" session on social settings was contribhuted
after the Workshop, since that session was not recorded and
transcribed. These papers serve to replace the edited

transcripts that would have been generated had that session
heen recorded.

i hdban

The participants were also urged to comment on the
draft PEBBLEMAN document circulated prior to the Workshop,
and to submit proposed changes to the preliminary document
for possible inclusion. A number of such candidate changes
were submitted as a result of the deliberations of the
Workshop, and the Chairmen of each of the Working Sessions

: were invited to read aloud the relevant sections of the

) Preliminary PEBBLEMAN document at the outset of each
3 session, and to solicit the views of the session
participants.

The Opening Session Address by Lt. Col. William &,
* Whitaker is particularly important for understanding the
background and setting of the Workshop, and readers are
urged to study this address first in order to gain a proper
initial perspective.

T W s o

o

Opening Session
Welcoming Remarks by T. Standish
Opening Session Address by Lt. Col. william A. Whitaker, USAF

Welcoming Remarks
by
T. Standish

On behalf of the Computer Science Department, I would ‘
like to welcome you to the Irvine Campus of the UYniversity
of California. 1

This is the campus where some chemists made the
. discovery that fluorocarbons wreck the ozone layer. Wwhile
J some say this discovery has saved the entire future of the _
4 planet, others feel that the major impact has heen to pelt i
you with a lot of new deodorant ads, such as the osne which '
urges you "To get off your can and on the stick”. -

A word about our sponsors -~- This workshop is
sponsored jointly by the Army, Navy, and Air Force, and, as
such, is a venturc of the joint Services

e R Ay

I would now like to introduce our speaker. for the il
opening session, who is Lt. Col. William A. Whitaker.

In connection with the Common High Order. Language, Col.
Whitaker works at the pleasure of the Undersecretary of
Defense in the capacity of Chairman of the High Order
Language Working Group (HOLWG). He has been involved with
computers since 1953, when he cut his programming teeth on a
604. He has a Ph.D. in Physics from the University of
Chicago and he has probably consumed more computer time than i
anyone in this room. At one time he had one and a third ;
6600s at his disposal full time for a period of six to seven ;
years, and he has accumulated personally ten man years on a I
6600. 1If any of you can match that you're welcome to try. i

by

Opening Session Address ’1
1
Lt. Col. William A. Whitaker {

L

Thank you. I will quickly bring peopie up to date, X
giving a very fast overview of the program. 7T would like to :
give the entire one hour talk in about 1# minutes, so, if
the view graphs move too fast for you, come up and get them . ‘
later, hecause I'm not going to keep them on very long. i
We're talking about the DOD Common High Order Language ;
effort, and we're talking about what we call embedded
computer systems. This has a strange legalistic definition,
but generally they are weapons systems, communication
systens, command and control, avionics, simulators, real
time systems, and systems that are rigidly attached to some
very large overall system. We are not talking about what we

at the DOD call automatic data processing equipment --- that
is, financial management, inventory, accounting, payroll
that sort of thing. 1In particular, that's done by COROL in
the DOD just like it is everywhere else. WWe are not talking
about large scientific computing which is done by FNRTRAN,
just like it is everywhere else. I emphasize this all the
time because it is in our charter that we're not in the
Common Language effort to replace CNROL or FORTRAN. 1In

. fact, it is the success of COROL and FORTRAN that encourages
us in this work. We are not trying to compete.

. I will also remind you that we're involved in
programming languages --- programmers talking to computars.
not special application packages or simulation languages
like GPSS or SIMSCRIPT, not automatic test equipment
languages like ATLAS which is a test designer to technician
language. We're talking specifically to computers, not
talking to data bases or whatever. The High Order Language
Working Group is running this for the DOD. The members are
the Office of the Secretary of Defense and the Services. It
was specifically charged to formulate requirements for DOD
high order languages, evaluate the existing languages, and
recommend implementation and control of a minimal set of
high order languages. One recommendation is a nice minimal
set, but that's not the way it started out.

When we started out, we had no control, no commonality
at all in the DOD. We did not even have high order
languages, for all practical purposes. A very small amount
of what was done in the DOD was in high order languages. So
we started out and made a NOD Directive and said you're
going to use high order languages unless we know the reason
why; and its agoing to hbe hard for you to find a reason why
because the majority of the money we spend is in
maintenance, not in program development. not in writing the
programs, but in maintaining them for 2% years. Hiqgh order
lanquages obviously have great advantages in that area over
assemhly languages. It further says that the approved NDOD
high order languages will be assigned to a control agent.
We're not going just to name them on a piece of paper, we're

‘ going to control them And the interim list of Aapproved
high order lanquages was given as: COBOL, FORTRAN, ({MS-2,
SPL1, TACPOL and JOVIAL-J3 and J73. These were the
languages chosen from the hundreds of languages we had
beforehand that we restricted things to. That certainly is
a small number compared to what we had, perhaps not a
minimal nwnber, but a small number. Why aren't we happy

- with that?

Languages on that list are not necessarily the highest
. technology, the most appropriate, or the most powerful

lanquages you'd like. They are not satisfactory. Beyond
this administrative solution, we need technical advances.
We need high order languages that reduce the total life
cycle cost of software, that promote responsiveness,
timeliness, flexihility, reliablity, etc. Reliahilty is
obviously very important for the NDOD. Maintainability and
efficiency are also important. Commonly, the situation has
been in the past that high order languages have heen

S PN e P Lo e
[A e et b e s e s s . .
2 i R T L

rejected because they produce inefficient code and
everything has to be squeezed down into that tank, that
plane, or what have you. The old argument says that next
year core will be twice as cheap and computers will he twice
as fast. But this doesn't make much difference if you have
already bought your computer, or if, in fact, you bought
600¢ of them, and you've got to squeeze everything into
those little boxes. You don't get to buy a new one next
year.

Well, those are nice wish list kinds of things but
they're not very quantitative. We have gone through an
exercise to define the requirements on a functional level,
that is, not so specific that they really define a special
language, not so general that you can't define them. We
have done this by an iterative procedure. We generated a
document called STRAWMAN, and that was circulated, commented
on, and improved and called WOODENMAN, The next one was
TINMAN, TINMAN had an interesting property. It was noted
at that point that all the applications areas that we were
dealing with could be satisfied by a single set of
requirements. We started off thinking there was going to be
a set of requirements for avionics, a set of requirements
for simulators, for climatic control, etc. When we got down
to that stage, there was only one set of requirements, both
necessary and sufficient, for all the applications. We
finally understood that, but it was a non-trivial thing to
start with. It doesn't say that there can be a lanquage
that satisfies all those requirements, just that if there
were such a language, it would be the right one. We now
have an IRONMAN (IRONMAN by the way is not the name of a
language. We don't have a name for the language. DOD-1 is
not the name of the language). IRONMAN has been revised,
and next week we will have a STEELMAN. These are
requirements for the language. The STEELMAN looks pretty
much like a language manual. It has syntax, types,
expressions, constants, control structures, procedures, and
that sort of thing, but it is not a description of a
language. It is a description of functional requirements
that the language must meet.

We have gone through three economic analyses of the
benefits of using the language, the introduction rate, the
adoption rate, and that sort of thing. We're not here today
to debate the advisability of doing this whole program.
We've heen operating on this program for three and a half
years. It has been widely commented on and we have a number
of independent economic analyses. We will have even more I
am sure before we are through. 2all of the economic analyses
agree that with an appropriate language and tools the "OD
can save hundreds of millions to perhaps several thousands
of millions of dollars. That seems like a fair amount of
money, but then we're spending a fair amount of money,
perhaps three or four billion dollars a year, on software as
it is. So we can save an interesting fraction of that.
There are technical benefits and there are commonality
benefits. Commonality is often considered cost avoidance.
That is, if you have a compiler that two people use, you
didn't have to write it a second time.

The goals of the program are: A modern high order
language in order that you can really do the program in high
order language and not have to drop down into assembly
language as we do now. Programming tools --- a lanquage by
itself is only a step; you really have to have the
programming tools and to develop the environment in order to
increase productivity. A common high order lanquage allows
you to share the expenses over a number of different
programs and therefore reduces the cost. A minimal number

reduces the cost to the smallest number. A single languaqge
however has unique advantages. You can expect a fair amount
more cooperation from outside DON if we could get down to a

single language.

We evaluated the existing languages against our set of
requirements, which was at that time containad in TINMAN. A
number of languages were formally evaluated, and twice as
many were informally evaluated --- most of the ones you can
think of: COBOL, FORTRAN, TACPOL, CMS-2, CS4, JOVIAL J3 and
J73, LTR, LIS, PASCAL, ALGOL K8, PL/I, ..., all sorts of
languages. The group did not see any that we wanted to make
the common DOD language, even with significant
modifications. However, the evaluation group, the
contractors, and the High Order Language Working Group were
unanimous in the statement that it was desirable and
feasible within the current state of the art to produce a
single language meeting essentially all the requirements.
This is the other side of the requirements statement. Not
only if we had a language that met the requirements would
that do it for DOD, but it now savs that, on the basis of
paper studies, we believe that the single language can be
produced. So we went to a design phase to produce such a
lanquage.

Nesign contracts were let for the first phase of three
phases. The first phase was a preliminarv desiqn. The
second phase is a full design including a translator. The
final phase is for initial maintenance and control, so we
can get squared away. There were four Phase I contracts
awarded for competitive prototyping. The contractors were
CII-Honeywell Bull, Intermetrics, SofTech, and SRI
International. You will note that all the successful
bidders, and this was an open RFP on which we had a number
of bidders, chose to start from PASCAL as a hase. This was
not a constraint on the contract, and other bidders chose
other bases, but all four Phase I winners chcse to start
with PASCAL. This is a convenience for us. The Common
Language is by no means to be a PASCAL superset. What we're
designing against is the set of requirements that are very
much different from the specifications for the design of
PASCAL. PASCAL is supposedly a small language --- a
teaching language. We obviously have other requirements.
Nevertheless, there will obviously be a resemblance to
PASCAL, but it is in no sense a PASCAL superset.

You will note that there are colors attached to the
Phase I language designs --- green (CII-HB), red
(Intermetrics), blue (SofTech), and yellow (SRI). For
those, you have seen the product of the first phase, and

[P T S IR A

[EOv S

B cstmias b e BT AR b s e W iR a3 1 amiah

[T P

those were the contractors associated with them. At the end i
of the first phase we got a product --- the preliminary
language designs. These were reviewed by 88 industrial,
acadenic, and military teams. On the basis of these
analyses, a decision was made to continue in a prototype
fashion, two of the contractors --- CII-HB and Intermetrics.
Now we are in the next stage of the exercise.

Having the design well under way (that is, we're pretty
far down the line now), we can turn our attention to the
development environment. We will probably spend 80% of the
program resources on the development environment, and 28% on
the actual language itself, so we are talking about a fairly
extensive development outside just the language design.
There are compilers. Obviously we need compilers in order
to get acceptance of the language. One of the main
difficulties with the languages we have now is that if you
wanted to go out and use them in your program and you went
out for bid on machines, and you've got this wonder ful
machine that is the low bidder, it's not going to have a
compiler for your favorite language. 1In fact, it's probably
not going to have a compiler for any language, and that's a
difficulty. High order languages will only be popular in
the DOD when compilers are widely available. We're going to
write compilers, but more than that, we have to provide
compiler writing technolegy for those compilers that we
don't write.

We need tools of all sorts. 1In doing an audit of major
software projects in DOD recently 1 have been very
disappointed to find that there are very, very few tools in
evidence, and those that are in evidence are little used. I
have lived in programming environments in which the tools
were very powerful and very useful, and an increase in
productivity of orders of magnitude is possible for very
specialized tools. Very few of these are available. Last
Thursday, I was at an ACM/NBS Symposium on Tools for !
Improving Computing in the 86s at Gaithersburg. That was :
the title of the Symposium, and as far as I could determine,
there were no papers on tools. However, they all recognized :
that was the reason they were there, looking for somebody !
else to tell them the way. Today, we are looking for you to
tell us the way, an¢. in fact, to come up with tools. We i
need octher supporting software, automatic translation aids, !
application packages, training, documentation, and all that
sort of thing. PEBBLEMAN is the requirements document
asso~iated with the development environment.

Finally, I want to bring out the point that control of

the lanquage is extremely important. It certainly is

something we have learned from COBOL and FORTRAN. Vou can't

just publish an interesting paper and expect anyhody to go ‘

out and write a compiler that looks anything like what you |

thought it was going to be. 1In the past, there has been a :

great deal of difficulty in defining the lanquage so well so (

that the compiler writer could know and there's been very i
] little incentive to check on his being able to do so. 1In

particular, the design of this language is not to be left to

the compiler writer, which has been the situation in the

WA ey s

past. We will have validation of compilers. The systems
that exist today, that work and that have improved the state
of the art considerably are COBOL and CORAL 6% primarily.

We will go through the formal procedures for standardization
of the language. You will note that standardization is
something that has been a slow process in other lanquaqges.
Standardization has been impeded by the following process:
you publish an interesting lanquage, lots of people qo out
and implement it, all differently, then the standardization
process has to get all these different compilers together.
We're going to start off in a firmer position so that we
don't ever generate that mess that takes 10 years to
resolve, hopefully. Accessibility of tools ohviously is an
important part of control.

Let me go through the schedule. In Augqust '77 the
preliminary design contracts were let, April '78 the Phase 1
selection was made, April '79 the final selection will be
made between the two remaining contenders. There will be
test and evaluation of the language, not of the compilers,
but of the language itself, something I don't believe has
been done before. 1In this thing we expect to write a fair
amount of code in a number of different application areas to
test the suitability of the language and to find
difficulties. One of the problems in the past is that it
takes a long tiime for a language to settle out because it is
written for one particular project which works with it for a
while; and another project may come along and pick it up
two or three years later, and they find all sorts of changes
they'd like to see made. It is not so much a function of
time as a function of the number of application areas and
the amount of code that's been written. We're going to see
if we can compress that to a very short time. Compiler
implementations will take place during this period. 1In 198a
we're going to have availability of the lanquage. By
availability we mean that the language should be hetter
supported in the number of compilers and tools and
specifications than any other languaqe on the approved DOD
5A39.31 list. Then we will add it to the approved list.

I might point out just a few of the contacts we have
made in this area. The Furopean Community has heen closely
involved with our efforts. They started an effort that was
very similar to what we're doing. They had political
difficulties, were coming along fairly slowly, and have
essentially abandoned that effort in order to follow us.
The governments of the United Kingdom, France, and the
Federal Republic of Germany have also contributed quite
considerably to this effort., The International Purdue
Workshop, LTPL-E and LTPL-A have supported us. We have
Peter Elzer sitting here who is the former Chairman of
LTPL-E and he represents the German Government.

Let me quickly go through the exercise for todav.
Environment requirements are what we're doing. The
requirements for the environment are obviously in some sense
looser than the language requirements. The lanquage
requirements are rigorous and specific and they are, 1in
fact, requirements on the language. In some sense, certain

environment requirements are more of the situation of what
we want to do, of a wish list of what we intend to do with
our program. In some cases, particularly in the situation
of control, they are very firm requirements, but it's a much
broader spectrum in this area. We do wish detailed
environment requirements, just as we have the requirements
for the language, and we wish them to be widely circulated
and commented oh. We've been very open in this entire
exercise, and that has been extremely useful. We say for
public comment, but obviously that also means for comment
inside the government and from government contractors. The
DOD is involved in 50% of the software that's being
developed in this country, so when you say "open comment”,
at least half of the people out there work for us anyway. 1
might point out that is in marked distinction to the
situation with hardware, where we used to have a voting
majority, but have it no longer. In software, we are still
dominant. The requirements are to provide for management
and control of the language. Obviously, the management
issues that are addressed in the environment document are
not really the concern of this Workshop.

The control of the languaqge, particularly in the
technical sense of control (i.e. how you do it), is
obviously very important; and aqain, so are the tools. I
might very briefly go through some philosophy, putting the
situation in context. We do not intend to force the
language or the tools on any systems project office, that
is, speaking for the moment, for the High Order Language
Working Sroup and for the 'Indersecretary of Defense. We
regard the effort as successful when it is adopted
voluntarily by these program offices because it is clearly
better, cheaper, more available, more reliable, etc. That
is not to say that somewhere else in the government,
somebody may not require it, but that is not the purpose of
this program,

We do not intend to provide all possible tools, just a
basic tool box. We will encourage the normal software
marketplace to produce tools and market them in the normal
fashion, whether they be produced directly for the
government, produced independently, rented, or what have
you. We will be in the position of generating & market for
these tools in the form of a2 common user to which it will be
convenient to market. It is very difficult for the software
industry now tc market tools for.-J73, for ‘nstance, since
there are only a couple of users of J73. Further, we do not
wish to write all possible compilers, but the acceptance of
the language depends upon very wide availability of
compilers. We shall provide some compiiers as necessary for
the ongoing programs, and shall encouraace others to build
and validate their compilers through our validation system,
particularly the machine manufacturers. We will provide
compiler writing tools and facilities as we develop them
that will be widely available. We will obviously not
provide all training for the lanquage. This will bhe done in
the normal way; contractors rnormally provide their own
training, the government provides internal training, and so
forth. I must note that, in general, there is very little

|
|

B e o e e ke e ive e
11

R training, and there is a fair amount of evidence that

' training does markedly increase productivity. A fairly
recent study by IBM indicated that experience in training in 1
the language itself, just that, can increase program
productivity by a factor of two. The common occurrence in
the industry is that a programmer hired off the street to
work on the $50 million effort gets a full four hours worth
of training in the language. That's the state of the art.

I don't believe that is cost-effective. We will provide
materials for the training as necessary. That also
indicates we may wish to produce such training materials and ‘
such other materials in different human languages, because {
we are looking for a certain international flavor in this
exercise.

The PEBBLEMAN does not yet exist. There is a
Preliminary Cammon Language Environment document which we
have sent out to you. It is preliminary; there are lots of
modifications we would like to make. It is something that ;
has been fairly difficult to achieve, because it has been i
difficult to get people to reply with definite line-by-line 1
changes, We hope that this Workshop will produce such. 1In :
fact, the comments and input from this Workshop will be
incorporated into this document which will then hecome the]
PEBBLEMAN. Our time scale for this effort is that next week ;
it gets typed. It is to be published by the 3@dth day of !
June, so we need the comments this week and we need them f
hopefully in a form which is appropriate to add to this |
preliminary document. I remind you, of course, that what b
we're talking about here is primarily the DOD environment, - |
the development and maintenance environment. That is .
different from some others, particularly the academic
environment. We are talking about building large programs,
very long lived programs. We are talking, in some cases,
about working in a different physical environment. For
instance, there's an awful lot of use of cards in the DOD
programming environment. Lots of people here haven't seen a i
card in a long time, nevertheless, there's a lot of them
still around. Which is not to say that is the thing we have #
to stay with forever, but rather to realize there is a
situation which we're trying to address. Not all comments
from the Workshop may necessarily be appropriate for the #

1

PEBBLEMAN. Perhaps some of them of the more qgeneral nature
are appropriate for the program management plan, which we're
revising too. The present version of the preliminary
PEBBLEMAN document we have here is primarily for guidance 3
from this Workshop. We are not bound by anything in the
preliminary document. Nothing is sacred --- neither the {
exact sections, nor the particular statements contained in
them. Given expansion in detail, with specifics, we can
later determine what is required, and what perhaps is just ;
desired.

I guess that gives you what we regard as the importaance
of this exercise. There will be a Workshop Proceedings
produced that will be valuable for other peopie engaged in
this exercise later on. On the other hand, certainly the
most concrete publication I car. offer is that it will
directly affect the DOD requirements as expressed next week.

12

So we do have a real need for this information.

R. Balzer: Can you say anything about the time frame that this
, Workshop should address in terms of creating, specifyina, or
portraying this program development environment?

Col. Whitaker: We normally are saying the program is "for the
8@s”; that is, the language will become available in the
198As. We note that from historical observation, a
generation of either tools or lanquage seems to be about ten
years, although there is no firm commitment to that
duration.

K. Bowles: You've given a very delicate treatment of the
question of management. I, for one, wish you success. At
the same time, note that DOD is not noted for voluntary
action and you've laid out a plan that sounds like it
depends on voluntary action. My question is, is there a way
that we in this voluntary Workshop can strengthen your hand
so that maybe there's a greater possibility of success?

Col. Whitaker: I tried to phrase my statements on that very
carefully. This Group, the High Order Language Working
Group, has no charter to enforce the use of the language.
That is not to say that the Undersecretary of NDefense
doesn't have that charter. There are a lot of difficulties.
We have people now who are committing themselves to the use
of the languane. On the other hand, there are a number that
are sitting back and waiting, as well they might. There's a i
reason for a number of people not to commit themselves. If
the language is technically successful, we certainly will
have a large popular following. Then I think things will go
very well. So the most important part that I recognize
right now is really the technical success of the lanquage. ;
The difficulties that arise would be with individuals in the ¢
organizations. I would not, at this point, solicit your !
writing your Congressman on the matter. We are coming along
very well. 1I might remark that on the basis of what is
happening elsewhere, in other countries, it certainly
appears that this is an effort whose time has come. There
is wide reccgnition of that and so things are happening.

pi s T

oo

----- ¢ On the question of standardization, has anything been
done on subsetting? For example, will subsetting be allowed
in this language at that time?

o YR oty

Col. Whitaker: We have not finally resolved that question, but
tentatively, we see no reason to subset the language., We
regard subsetting as a very dangerous thing because it leads
to dialects.

-====~3; What's to prevent a particular contractor from using only

B T e I R I R B e vty - | 27 m "

13

a portion of the language?

Col. Whitaker: Using only a portion of the language is a good
thing. That is not subsetting.

..... : That's a subset.

Col. Whitaker: No, that's not a subset. There may be an
administrative restriction that will not allow programmers
to use.'a particular portion of the lanquage on a particular
project ~~- that's fine, because the program will compile on
anybody else's compiler. However, what we consider
subsetting is when the compiler itself refuses to recognize
some construct. The validation procedure will require that
every validated compiler recognize every construct of the
lanquage.

A. Gargaro: Going back to PEBBLEMAN, once this June 3Ath
document is published, where do you expect to get the
majority of feedback on the document --- from the
participants of this Workshop, or from the DOD and the
industry, at large?

Col. Whitaker: Presumably the participants of this Workshop will
participate, but mostly those that did not participate would
be involved. That's a much larger group.

----- : Do you have in the back of your mind a schedule saying
when you would reconvene another Workshop?

Col. Whitaker: Not necessarily a Workshop. We would reissue the
document when there are an appropriate number of comments.
I would think it would not he before January 1979,

----- : What is the mechanism for distributing the document?

Col. Whitaker: We have a large mailing list. We talk about it
wherever we go. People write in. It will be formally
distributed through the Services. Everyone here will, of
course, get a copy.

S. Crocker: On the subject of embedded computers ve:rsus
non-embedded computers, are you trying to encourage, to
discourage, or have you given any thought to the matter of
technical implementation of the language on the ordinary
machines we see around?

Col. Whitaker: That's a good guestion. "Embedded" has a very

ababs

14

special meaning in the DOD. The meaning is those computers
that are brought under the 5AAf series of requlations. The
non-embedded computers are those reported under the Brooks
Bill. This is not a hardware distinction. We have embedded
computers that are 36fls and 4A00s, so the distinction isn't
really that clear. Further, in the DOD there is a large use
of cross compilers which are getting to be much more the
common environment; so development programs are very common
on 56A0s and 354s, cross-compiling down to whatever your
favorite mini is. Therefore, the compilers will more likely
be hosted on these sorts of machines. The applications of
writing payrolls which may be on the same machine type are
not what we're interested in --- that's the distinction.

o

AT S S ———

?.
?
%

15

-

Session lA: Experience in Lanquaqge Standardization
Cdr. John N. Cooper, Chair

J. Cooper: We have two extreme methods within the DOD for
controlling languages--the Mavy’s and the Air Force's. In
the Navy we are the controlling agent of CMS-2, which has
been around the longest. We have two compilers, one for
l16-bit machines and the other for 32-bit machines. About
250 copies are installed around the world.

Copies of these conpilers are installed and maintained by
the Navy. The way the configuration management is performed
is that we have only one copy of the compiler's source code
and it's locked in a vault at the compiler maintenance
facility, and nobody has access to it. When we qgo to a user
site to install a compiler, we only give them an object load
module. Therefore, since nobody has the source code, nohody
diddles with the language. We do all the maintenance of the
language for them so we know at all times the status of each 3
of those 250 compilers. As a result, we have the hurfden of :
maintaining and providing the documentation for the
language, as well as accounting for all the hugs in it. Now
I'1l let Sam nNniNitto tell you how the Air Force controls
JOVIAL, which is more like the COROL way of doing things.

S. DiNitto: Colonel Whitaker talked earlier ahout NOD
directives 5A74.20 and SAF9.3A. What happened was that each
of the three services were supposad to come un with their
own set of regulations governing the use of lanquages for
themselves. Now the Air Force came out with a requlation
called AFR300-10 which limited the number of languages that
the Air Force could use to a small number namely FORTRAN,
COBOL, and JOVIAL. It excluded CMS-2, SPL1. and others.

The Air Force was designated to control JOVIAL within DOD.
That weans that any DOD user would come to the Air Force for
information about JOVIAL. The Air Force in turn designated
a systems command group, which we are a part of, to be the
control agent.

Unlike the Navy JOVIAL is not frozen. I believe it is
5000.31 that allows you to make changes to the language not
more than once per year. The Air Force fully accepts that,
which is wrong in my opinion. We still have a mechanism,
3 that Colonel whitaker mentioned, by which you can avoid
E using JOVIAL if you have a good enough reason for not doing
‘ so. So far, since the control mechanisms were instituted,
we see more reasons for not using JOVIAL than reasons for
using it. We set up this elaborate mechanism which consists
of a desiqgnated control ament, and he is Aassisted by a
policy control board ... which requlates how the lanquage is
going to be controlled.

The designated control agent is strictly a hureaucrat.
Technically he doesn’'t have much to say. So he has
delegated certain tasks to a languane control agent, in this
case for JOVIAL. This is the organization I helong to. It
is responsible for performing all the technical duties
associated with controlling the lanquage. These include

e ran

16

S TR T TR

validation of compilers. One thing I should point out about
validation is that we will not validate or certify a
compiler forever. It will only be validated once per

P application. The principal reason for that is that changes
may come into the language and we want the new user of the
language to get the latest version.

Assisting the control agent is an organization which is
going to be called the Language Control Facility. It will
collect data on the use of the lanquage and information of

: that sort which we hope will give us some insight into where
E the problems are in the language. It will provide

' programming tools for the language (whichever ones are
availabhle) and give assistance in buying compilers.

[Mr. TDiNitto goes on to describe the lanquage control
hureaucracy in the Air Force. He concludes by observing
that it will probably be difficult to force the various
control agencies to strictly adhere to requlations
regarding the use of a standard DOD langquage and its
associated tools.]

J. Cooper: I want to set the record straight on a couple of
things. Our language is not at all frozen. It changes not
infreguently, but the major point is that there is a
Navywide Configuration Control Board that manages the
changes. The proposed changes are submitted to the board.
We approve, or disapprove them, and then they are
implemented by the compiler maintenarce group. So when we
have a change to the language or to the compiler, only one
organization makes the change and then everybody has the
same change.

P. Wegner: Do you have any quantitative measure as to how many
changes are made or how large they are?

J. Cooper: Well, we have one basic ground rule and it goes
without saying that POR1 will have to have the same ground
rule, that all changes have to he upwards compatible. So
you don't do anything to impact any existing systems.

P. Wegner: Are there several changes a week, several a month?

J. Cooper: No, mayhe eight to fifteen a year. We've always
controlled the language hy controlling the source code, bhut
we've only managed it on a Navywide basis over the last four
years. Since we have done that, it has served to limit the
number of changes. Before that, the compiler maintenance
activities performed their own configuration management, and
made whatever changes they wanted to. Now that it is
controlled on the Navywide basis, it has served %o reduce
the number of changes.

S. DiNitto: When a so-called upward compatible change is put
in, we found often that all the software has to be
recompiled. This is not a minuscule task.

J. Cooper: That can be a problem, but we only have the two
compilers, and when we go to evaluate a change we know,

Cab i

17

really know, what that change will involve and whether it
would cause some subtle incompatihility. 1If it is going to
cause a subtle incompability we don't implement it.

M. Wolfe: How many users do you have?

J. Cooper: Well, we have over 250 compilers installed, so that
means that there are approximately 250 geograhical locations
that are doing Navy software. On the average there are 49
or more programmers at each location. So we ve got tens of
thousands of users.

These two compilers, do they only operate on two
separ ate machines?

Cooper: I was afraid you were going to ask that! The Navy
is very standardization oriented. We have a standard
language; we have standard computers; we have
documentation standards that everybody has to follow. So we
have a limited set of computers we have to generate code
for. The 32-bit variety is hosted on our standard computer,
the AN/UYK-7, and it only generates code for the AN/YYK-7,
However the one for 146-bit word size is quite different.
It's written in standard FORTRAN, it's a true cross
compiler, and it's hosted on a wide, wide variety of host
machines. But it has a limited set of targets, namely, the
standard 14~hit machine.

Crocker: I was looking for some standard Navy systems that
are programmed in CMS-2M, and had expected that NAVMACS, for
example, would be one of those that T might find in CMS-2M,
I was told that although it was a communication system,
although it was mandated to be written under 2M. in fact it
was written under assembly language. Where is the trouble?
Why the discrepancy?

Cooper: I don't dig the discrepancy.

Crocker: The Navy has standard languages and has mandated
that they be used in development of certain systems, and now
we find that particular systems didn't develop that way.

Cooper: The language was available and was a standard. What
we did not have was a mandate that made everybody use ijt,.
The only competitors in the Navy we have are assembly
languages. We don't have any prcgrams written in FORTRAN or
PL/1 or anything like that. DOD instructions S620.29 and
5000.31 were the first marndates that gave us i2verage encugh
to knock-off *he use of assembly language. So new even
assembly language usage requires waivering.

Crocker: But why was the decision made that way? VWhen?

Jooper: Something that DOD1 has got to recognize eventually
is that the lepartment of Neferse is perverted for
efficiency, especially for Avionics systems because their
space is 30 limited. Communications thinks they have vo be
super-efficient. Every community has a reason for its
perversion which is extreme.

18

S. Crocker: 1Is there some evidence that these languages can't
compile as efficiently as assembly code?

J. Cooper: There is some evidence, yes. It's biased evidence.
They always point out how inefficient the compiler is
compared to assembly language. They always compare a
perfect program in assSembly language, not your average
assembly language program.

S. Crocker: For other languages it is fairly clear that one can
compete well with assembly coding on the averagea. i

J. Cooper: We've done some benchmarking. We know kind of where
we stand. CMS-2 is not nearly as efficient as we would like
it to be, and it is being optimized right now. On the other
hand, for SPI/1, our newer lanquage, we've done three
benchmarks, and it comes out around 7%, and that includes
all the runtime support overhead that goes with it.

-------- :+ In space or time?

J. Cooper: Both. In these hbenchmarks we actually did the same
program both ways for comparison and came up with
approximately the same figure all three times.

C. McGowan: That is a remarkable figure, but can you say
something about what percentage of software development
efforts get exceptions and do assembly language
implementaticn rather chan use one of the higher-level
languages?

J. Cooper: Since DOD instructior. 5800.31 was signed in November
1977, there has been no waiver granted for assembly language
use. If anybody is doing it sirce that date, they are doing
so in violacion of that directive,.

C. McGowan: Have there been any requests? How many software :
development efforts preceded that and wha:t kind of numbers -
are we talking about?

J. Cooper: Whether it is a DOD or a Navy policy, you never make
them retroactive. So the only ones that would be candidates
to come under the thumb of this new requiremert would be
those new starts after that date. There are literally
thousands of Navy projects using computers that started
before that. 1It's heen a year and a half, and in that time
there have probably been a hundred or sc new starts.

M. Wolfe: In the langquage CMS-2, do you alluow embedded assembly
code?

J. Cooper: Have to.

M. Wolfe: Do you count the use of the embedded assembly
language coding as using the high level language?

J. Cooper: There is no ruling printed on that. 1In the legal
profession they have some court cases that help set the
precedence. Clearly, a guy who goes in with his first card

19

as & header card to drop to assembly lanquaqe, and the last
card in his deck is an "end assembly lanquaae" card, you
know that he's cheating. 1In the case 2f the contracts 1ike
the F-1P at MchPonald Tounlas, we came with a hard
percentage. Once yon force them into the higher-level
lanquage box, then they Aon't get so carried away with the
assembly languaqge. Then they usuvally use it for I/0 and
optimization.

J. Cooper: The real purpose of the workshop is to develop
inputs for guiding the future of DODl. I would like to use
the second half of our session this morning to start
discussing more of how DOD1 should be managed. For example,
should we manage it the way the Navy does CMS-2 or should we
manage it the way the Air Force does JOVIAL, or something in
betwean the two, or one of each? These are the kinds of
things that would provide good inputs for the Pebbleman
document.

To give you the benefit of some of the problems that we
encountered at HOLWG meetings I can pring up some of the
issues that were raised there. You have to be very careful
that you separate in your mind and in your requirements the
difference between a language and an :implementation of the
lanquage. 1Is that a requirement on the language or is that
a requirement on the compiler. You often get fouled up in
the two when you fail to keep them separated. Another thing
is that there are three levels of control for DOD1. 9ne is
that NDODl1 has world-wide or international implications and
so we end up developing a language to be used by everyone, a
lot of people in the world, who we don't have any control
over. There is ancther level, the DOD-wide level >f contrcl
where we do have the say in how things are done. But even
in that context there is yet a third level, that the
individual services may do things differently. So as you
address the different control measures and mechanisms, you
also have to keep the different levels in mind. 4

------- ¢ Could you expand and enlighten us a little hit more
about the two approaches? Particularly, what are the
inadequacies of the Navy's epproach for deing what it is
supposed to do, and what does Sam feel the inadaquacies are
for the Air Force's approach.

J. Cooper: The main reason ours works is because we have such a
limited set of architectures to target for, hosting's nc
problem. The more targets that you try t> support, “he
larger it makes the project.

Also, it is almost the same difference as hetween

: centralization and decentralization., Correct me if I am
wrong Sam, but their approach is more of "here is a
specification for a language; yo2u huild the lanquage to
this spec and ther we'll test it." In our case we GFE it.
In DOD we have some leverage now. There is a DOD
instruction being staffed now that will 1limit the
architectures in DON.

T. Cheatham: An architecture is the machine?

g < o SN 7 37 OIS P Y VA WP O P

20

@ J. Cooper: No. DOD is coming to accept a weird definition of
computer architecture -~ that as seen by the assembly level
progyrammer. It is not a physical structure. It's a virtual
naked machine, no operating system.

S. DiNitto: Basically the Air Force does not really have a
serious hardware standard. The past history has been that
the system development office does not even specify the
hardware. 1t specifies capability, and this puts the weight
on the shoulders of the contractor. It leaves the systems
program office out of the position whereby they could be
accused of putting on unrealistic requirements in case of ‘
nondelivery. A wide variety of hardware causes problems
because compilers aren't always available.

[DiNitto explains that from his experience, contractors
tend to want to use stable languages which have heen in
use for som= time. In the Air Force standardization
system, waivers to use non-standard lanaquages are often
granted on the basis that the language to be used is very
stable.

NiNitto also briefly describes the British Air Force's
efforts to control their high-level langquage by freezing
it.]

W B YTy o [T WS NP TP T DN YW 31« L 01 T OAARMEE4 Ty e 57 T, PG e e B Yk ST S A Y PR T s e

M. Wolfe: 1 feel trapped when you say a lanquage is frozen.
Language is going to be evolving. 1It's going to change.
You have to allow mechanisms in your control so you can
permit this.

P. Elzer: I don't know whether to agree or disagree, but I
don't think that it is a law of nature that languages keep
changing. Why is it not possible to freeze it for, say,
five years with no changes at all? And then do all the
changes which wmay turn out to be necessary after careful
consideration all at one time. From a user's point of view,
I would prefer such a policy very much to a situation where
the standard keeps changing "just a little bit," but all the
time.

e e S

ittt e

P. Wegner: The whole philosophy of software methodoiogy is that
we have to design systems with change. T think it will he a
disaster to design this language and propose that it does
not change. Everything does change. The height of those
actions is to assume that man is not qoing to chanqe. A
lanquage is a complex application systen.

A. Gargaro: 1I'd like to go back to what CAdr. Cooper had said
earlier, tnhat we should be looking at some of the contexts
that might help us in language standardization. 1In my
experience, one of the problems with language
standardization is that we're not sure what we are trving to
standardize. I think it would be very beneficial if with
DODl, we did strive to get a formal rigorous specification
of this language. How are we going to do this, and how can
we look at the design specification of DOD1 so that language
standardization does become a realistic goal, not
necessarily wanting to preclude the possibility that the

T T A 7 AT e T I

T

21

language will have to change in time?

[Tape breakage causes loss of further discussion on
formal language definitions. Conversation resumes with
P. Wegners next remarks.)

Wegner: Clearly, what we want to do is to come up with some
sort of proposal for languaqge control that will be simple to
learn from the current method of languaqge control in the
DOD. I don't know how many people you have in ynur control
group; it sounds like a very complicated process. What is
needed is some sort of proposal to control the lanquane and
also the kind of standards that the control qroup needs in
order to operate efficiently

Cooper: The size of the control groups is dictated by the
method. Our control group is very small. I don't know what
the Air Force's is. You've got a lot more boxes on your
viewgraph than I would have on mine. [Reference is to
viewgraph used by S. DiNitto.]

McGowan: Let's suppose that the common language works and
becomes one of the standards. Suppose this standardization
is adopted. How would that impact your efforts in your
agencies, and if it would adversely affect them, what would
you like to see change? How would you like to see this
session on language support written? How do you envision
interacting with your group?

Cooper: Well, I'm in a position where T can take it or leave
it. I don't mean that facetiously. For example, whatever
is there, I can take it and run it exactly the current Navy
way. I can pick one compiler, one implementation of NOD},
freeze it, and say "that's the Navy's standard".

McGowan: But there will be one agency spanning all the
services rather than each service having their own. 1Is that
correct?

Cooper: That's not clear.

DiNitto: The point has been brought up that each one of the
services would be responsible for each of those three boxes,
and I do not agree with that. I think it should be totally
centralized. [The three boxes o which DiNitto refers on
his viewgraph indicate the areas of language control,
language support, and language validation.]

Cooper: 1 think it should be centralized toc. I still feel
strongly that :he language can be frozen.

McGowan: Do you have any experience in centralized
languages? Are FORTRLN, COBOL centralized or are they
distributed?

Coop2r: No, they aren't centralized at all. I don't think
so, especially COBOL.

McGowan: I mean COBOL within the WNavy.

O PTTY

P.

J.

J.

c.

D.

J.

J.

22

Cooper: No. The Navy just runs the COBOL validation for the
government,

McGowana» Suppose the common language is as good as everyone
hopes. Do you envision that within the Navy, people will be
using CMS-2 as much as or more than the common language by
19857

Cooper: It will depend on how simple it is, how efficient it
is, and those kinds of things as to whether it is qoing to
be popular with the user community. If contractors or
programmers who want to use DOD1l convince their management
they want to use it, then it will ultimately be accepted.
You have also got to take into consideration that we are
still going to have those seven lanquages on the currently
approved list in the inventory in the year 2000,

Wegner: They might go away in terms of new starts.

Cooper: Yes, new starts, but we will still be supporting
those other languages for the next 2@ years.

McGowan: 1Is it true that you and Sam agree that there should
be a centralized control that spans the services? That
would seem to he a strong statement that's not that strongly
placed in the Pebbleman.

Cooper: 1 agree.

McGowan: Can we discuss the pros and cons {of centralization
versus non-centralization]. There must be an opposing team.

DiNitto: I suppose to keep everybody happy, you give them a
piece of the action.

Wegner: Are there any technical reasons for having separate
control organizations that you can see?

Cooper: Technical, no. They are all political, financial,
and other things. Mostly NIH. Everybody's got to have
their own piece of the action to feel important.

Luckham: How about setting it up as a DOD organizatcion?

Cooper: I think that is the only way it would work. Wwhat
was originally in Pebbleman was the implication that one
setvice would be assigned a ianquage controi facility, and
another service would be assigned to languaqe support, and
snother service would be assigned to lanquaqe validation,
and they'd divie it up that way. But T don't even think
that would work anymore ... With each of those joint®
projects you end up with three subsets -- Navy, Army. and
Air Force. The problem with that is that it's a tri-service
system. That is, you have representatives from the services
as opposed to having it, not as a tri-service, hut DD,
where you have a separate entity, identified with the DOD
level, and you staff it at the DOD level.

Bladen: We in the Air Force Armament Lab are under thre

L Popryey

23

restraints of RADC and the JOVIAL control. However, we are
also looking at the way the Navy does things in that we plan
to have a standard compiler. We have what we feel is a
technical solution to the problem. We have come up with a
way of standardizing using JOVIAL. What we are going to do
is have one compiler. That compiler will be approved by
RADC. As a matter of fact, RADC is writing it. Once we qet
the compiler on the CNC /433 we are going to use it as a
standard compiler, and any new code generators written for
any machine will run on that particular compiler.

The next step will be to write numerous code generators to
retarget the compiler to the 16-hit microcomputers that we
are involved in. So by having one compiler with a library
of code generators. anyone of them can be swapped in and out
at any time to retarget to a different machine. We achieve
total flexibility. Suppose we buy a new computer and target
to it, then we use it in an embedded system and we write
JOVIAL software for it. If in the next phase we realize
that there is a requirement for a faster computer with a
different architecture, instead of throwing out all of the
software, we'll swap in a new code generator and target to
the new machine. The software has not been changed in any
way. This does involve a standard compiler. I would like
to see this plan put into the DOD1l program.

[Cheatham, Bladen and others discuss the merits of
Bladen's proposal. Cheatham points out that adopting
such a method for compiler standardization shifts much of
the burden of compiler production and validation to the
code generator.

No firm conclusions are reached and the line of
discussion concludes with the following remarks by
P. Wegner.]}

P. Wegner: 1 think that your prohlem is a technical one that
is very significant for language control. As far as the
conference is concerned, we should prepare a statement of
the problem with what we see the solution to he, and
identify several of these technical problems -- perhaps
of language control -- and how they impact the language
control process.

[The generel topic of discussion moves to the
relationship between language standardization and
validation. Several individuals suggest that there are
important relationships between the two areas. Cooper
indicates that another separzte conference session is
devoted entirely to the issue of validation.

The following remarks by Luckham and Cooper summarize the
remaining scattered discussion.]

D. Luckbam: 1I'm sure these topics about validating and
standard compilers will come up again, but I read this
paragraph 3.1 of the PEBBLEMAN as saying to minimize
changes to the language. Now, if anyone has been through

-

24

the four preliminary language designs, you can see an
abundance of new constructs. 1 think it is very unlikely :
that by 1984 there will not be any new good ideas that
have not been incorporated in the languages -- sonme i
obvious, provably good changes. It's quite clear that
you are going to get an evolution in this language
whether you like it not. So what is your procedure going
to be when somebody comes up with a reasonable]
suggestion?

J. Cooper: Don't have any answers. That is what we are
trying to generate with Pebbleman.

D. Luckham: Then I would suggest that you'd better have a
board of experts, either killing the idea by showing how
the code is just as well without it, or else how to
compile it and update the compiler. Somewhere here there
has got to be the technical expert advising.

J. Cooper: We have had lots of interest in tools. In fact
99% of the interest in Pebbleman so far has been in
tools. The second most popular area is certification. :
Nobody seems interested in the things that we were]
supposed to talk about here in this session -- Sections ‘
2, 3, 4 and so on. Yet the policy decisions that are
made in Sections 2, 3 and 4 are going to dictate what you i
do in tools and validation, etc. They set the €framework
for standard intermediate lanquages which you are going ;
to have to have. They set the stage for whether you even '
have a root compiler or not. So if'you feel strongly
about having a root compiler or standard intermediate
language, you really ought to provide inputs to the other
management and control sor: of subjects.

F Session 2A: Technology for Laanguage Specification
Steve Crocker, Chair

E 5. Crocker: In Section 5.2 [of the preliminary PERBLEMAN

docunent], under compiler validation, the second paragraph

. says: “The method of validation should be to compile and

' execute a standard series of programs written in the common
language to test for correct translation." This is not
strong enough. There has to be some provision for much
stronger types of analysis of the compiler and determination

» of the compiler coverage of the language.

The most important step that can be taken in this area is to
insist on a formal and rigorous semantic definition of the
lanquage. We all know that the techniques for formal
semantic specification of a language are not well developed,
and the few serious attempts have encountered various
troubles., But I am convinced that the attempts must be nade
anyway. I listed several reasons: [Crocker refers to a :
prepared viewgraph.]

A formal semantic definition is a prerequisite for formal
verification. Even if the formal definition is hard to
read, a sufficient number of people will read it andq
understand it. In particular, compiler writers will
understand it and base their implementatizn on such
understanding. It is quite likely that we'll learn how to
write reacable -- even pleasing -- formal semantic
definitions. If we do learn how to write these tnings and
they are readabple, they may become the reference of choice
for both more users and compiler writers alike.

e

Finally, some reference documents are absolutely required,
and these reference documents must serve as the basis for
arbitration of differences of understanding that undoubtedly
will arise. So even if the English or other formal
documnents were mcre readable, the formal documents provide a
better chance for eliminating ambiguities.

The focus of this section will be or: what are thue
prospects for formal semantic dzfinitions, how can we get
one, what the tools are, and what tools might relate to this
activity in the common high ordered language efforts.

D. Luckham: We'll just take a look at some of the techniques
now available for formally defining programming lanquages.
The first technique we'll look at is VDL, which is the
Vienna Definition Language. VDL was developed by IRM Vienna
laboratories to provide a formal definition for PL/1. VDL
is based on a concept of an abstract machine. The
wethodology goes as follows: you take a source program and
translate it by means of an algorithm called a 'translator'
into an abstract program; this abstract program is chen
executed on an abstract machine bty means of an algorithm
called an 'interpreter.' The meaning of a program is defined
as the sequence of changes in the state of the machine as
that program is beiny executed.

i i da i Sl

26

One of the advantages of VDL is that you can provide
detailed information about the languaqe you are cdefining
using this technique, and the abstract machine is an
intuitive method of demonstrating how the language works.
However, it is a nontrivial method to understand, and using
this abstract machine you might bring in extraneous detail
that could obscure some of the constructs of the lanquage.
Also, the translator/interpreter mechanism is not
necessarily a distinct division in a programming languaqge at
all.

Another technique which was mentioned earlier is to use
W-grammars. W-grammars are two-level grammars developed by
van Wijngaarden. They were used to formally define
ALGOL/68. W-grammars are not easy to understand. It is
possible to generate an infinite set of context free
productions by combining two sets of rules: hyper-rules and
meta-productions The combination of these two rules
generatively defines the set of legal programs in the
language.

Gerhart: How do you know what a program means in W-grammars?

Luckham: In the first phase, W-grammars can specify whether
a program is correct (i.e. legal) or not. The W-grammar
itself generates the set of all legal programs in the
language. To find out if a program is correct you have to
follow the grammar itself to see if that program could have
been generated by the W-grammar.

Crocker: The distinction is whether or not you have a valid
program, the one accepted by the definition of the languaqge,
versus whether you know that it executes the way you expect
it to execute -- the summary statement of what your
expectation is. How do W-grammars specify what the output
is supposed to be from execution of the program? DnNo they do
that?

Luckham: Yes, they do I don't know that I can really
answer that question.

{Luckham gives some sketchy details of W-grammar
meta-notions and hyper-notions, productions and rules.?

wegcner: This is the method for justifying the syntax not the
interpreter. There is no interpreter associated with 1t.
The interpretation mechanism as a separate thing in the
ALGOL 68 report is given informally. It discusses aow
things are elaborated.

Luckham: HRowever, there are semantic issues that are taken
up in the definition of the language.

Wegner: VYes, for example the language takes care of the
relation between declaration and use of variahles, if you
refer to those as semantic issues. But the actual execution
of the interpreter part of a VDL definition is aot part of
the wW-grammar formalism.

-

27

Using a W-grammar it is basically possible to do any Turing
machine computation, so you could specify anything you
wanted. However, the way they're used in the ALGOL 68
report is to specify the syntax down to excluding multiple
definitions of a variable in a blockhead. and making sure
that variables you defined are also used. and things like
that. It specifies syntax down to a finer level than in the
ALGOL 60 report, but it does not handle interpretation at
all, although in principle it is possible.

D. Luckhawm: Some definitions have been created that do have the
interpretation. The ALGOL 68 definition may not, but it has
been done with W-grammars. The only advantage I see is with
the single formalism, you can understand what they're qoing

r about. However, the technique is entirely generative and

: you have to follow through all these rules to see if a

program is legal. 1It's not necessarily the case that you

can see if a program could not be generated in a lanqguaqge,
and if there's no isolation of the context sensitive

i requirements from the context free requirements in the

E semantics, it's very hard to read.

{Luckham resumes his discussion of the various semantic
definition techniques.]

The third method is using attribute qrammars. This is a
definitional technique was developed originally by ¥Xnuth and
used to formally define EULER. It is a context free grammar
where you associate the attributes with the nodes on the
derivation tree of grammar. Some set of attribute
evaluation rules are associated with all the productions or
semantic functions. One of the advantages of attribute
grammars is that they're easily understandable. However,
they‘re not a full technique because you must combine some
additional formulas to define the semantics of a lanquage,
like denotational axioms, axiomatic semantics, or semantic
functions of some type. Some alternate methods include
production systems and Semanol, which will be discussed
later.

S. Crocker: One of the questions to keep in mind is: “How much
experience has there been with any of these techniques and
what are the prospects for actually using formal semaatic
definition systems in a practical way?"

P. Wegher: One related item is there's heen a PASCAL definition
which is not totally formal, and then FUCLID, and then
various other definitions along those lines. The TRONMAN
and STEELMAM are oriented towards that style of definition.
It's quite true that the PASCAL definition, as such, is

. incomplete and leaves lots of holes, but it may well be that
the direction to qo is to tighten up sonmething like the
PASCAL definition and make it semi:-formal (more formal than
it is now). That might he the style of definition more
appropriate to NOD1.

[E. Nelson now gives a detaileda presentation of the
Semanol system which is described in his position paper.
He concludes his presentation with the following

E.

S.

proposal.}

I propose that a standard definition would be comprised of
four elements: a Semanol specification, an axiomatic
specification provied by the contractor, a reference manual
defining the language in English, consistent with the
other two, and the compiler validation test cases.

Loper: I have a question about forms of parallelism.

Nelson: The DOD common language requirements requires
handling parallelism. These are admittedly new types of
language features which are not present in previous designs.
Looking into things like monitors and boxes, as described in
these preliminary designs, it would appear that Semanol has
the facilities to deal with them. It might turn out that
you would want to define some new high-level concept in
there to make it easier to describe., and there will have to
be some work in detailed modeling of what the language
designers actually produce. We believe it is a solvable
problem.

Gerhart: How about a fifth component to your
standardization? A proof of consistency between the
axiomatic and Semanol specifications.

Nelson: Yes. I'm not sure whether we know how we'll find
complete formal consistency, but there are probably a number
of tests that can be applied to check the consistencies of
these two definitions.

Crocker: Why are two formal definitions required?

Nelson: In principle, you would need only one. The
axiomatic specification which is being produced is not
adequate bhecause it is incomplete. 1t only covers a portion
of the language. Having the two of them we think,
particularly in a language as important as this, does help
in checking the consistency and provides a different way of
testing and using it. We believe the axiomatic definition,
although incomplete, is useful in itself, one reason bheing
its relation to current formal verification methodolcygy.

Crocker: This leaves me a little uneasy if you say it's
incomplete but consistent with the executable Semanol. What
can you verify if it is incomplete? Why can't you derive
those axioms?

Nelson: The incompleteness of the axiomatic specification
does mean that the formal verification technology is not as
solidly grounded as people imply that it is., It means that
they are dealing at best with some kind of partial proofs of
correctness because they have incompletely covered all
definitions. That doesn't mean it isn't useful.

Gerhart: 1In fact, the axiomatic specification is only a
part. There's also the identification of datatypes,
considered as somewhat of a separate definitional mechanism.
It's more than two definitions that you're talking about.

SQ

E.

s.

Col. Whitaker: The natural ianguage definition from which the

29

Operational versus some other kind seems to he the main
distinction.

wegner: Which definition would you go to if you had to
decide whether a certain language feature was correct? The
Semanol definition?

Nelson: I probably would do to Semanol bhecause I'm more
familiar with it.

¢ < v B T AR A T g

Crocker: What do you mean when you say that a language
construct is correct? Do you mean the compiler is right, or
do you mean the user was using the language feature
correctly. There has to be one meaning, there can't be
several.

Nelson: If they disagree, then of course they are
inconsistent z1d you may want to resolve the inconsistency.

Wegner: If we have these several layers of definition, then
what will happen in practice is that, and this is good, when
people have a problem concerning the language they will
probably go to the English definition first. And if it can
be answered at that level, fine, and mostly it will be ahle
to. Hopefully, one of the reasons for having the more
formal definition is to get the English definition right.
And, hopefully the English definition will bhe sufficient
for most purposes. 1In practice, the Fnglish definition is
going to be crucial to everything, and that's why I nrefer
it in the PASCAL style probably. wWhat we're really working
at is to get a good and complete Fnglish definition. 1In a
sense, the formal Semanol definition and the axiomatic
definition are, too, to get a bhetter English definition. ...

One further point concerning your comment and discussion:
what you're really saying is that in the class of things
that are more like operational definitions, you include
Semanol and VDL and so on. Semanol may well be the best way
to go, as far as that is concerned. The other point is that
several complementary definitions are probably the way to
go.

Crocker: A couple of guestions about the experience you've 1
had with Semanol. How big do these definitions turn out to
be, how much effort do they take? How come it hasn't spread
like wildfire across the landscape?

Nelson: Here is a copy of the JOVIAL J2 Semanol
specification. It is not very densely packed. [Nelson
displays a document of a dozen or so pages.]

Crocker: How big is the Enqglish spec?

Semanol specification was developed is about six or seven
pages. It is smaller print and it is double columns,.

I would like to back up what Dr. Nelson has said. We have
found it [the Semanol definition] to be a verv useful tool

S.

E.

S’

30

in debugging the language specification itself., It kind of
backs up what Peter was saying. 1In talking to the British
about their experiences with Coral 56, they did undertake a
formal definition of that language. The problem they ran
into was that the people they had to approve it couldn't
read it. I think we do have to stick with the natural
language definition. 1It's the standard as far as we can
take it because right now, I think, the state-of-the-art,
even Semanol, is a lot of work to read. If you want to look
up something like the example he gave, you want to find out
exactly how loops work, for example, you have to look
somewhere else which in turn will refer you to something
else. The information is there, but it is A lot of work to
get it out.

Crocker: What are the prospects for brinqging those two
things into conjunction so that the formal spec is a
readable, even pleasina, reference document?

Nelson: I would say you'd have to start with the natural
language specification, then work to the formal
specificaticn. Where problems are encountered, well it's
going to be a matter of editing natural lanquage
specifications and resolving the problem where it's
identified.

Crocker: 1'd like to provoke some discussion on the point
that Peter raised abcut a semi-formal specification being
the most natural resting point. 1I'm fairly enamored of the
idea of being able to take a formal definition and do
several things with it. Execute it for one thing, just to
see what candidate programs are going to do. 1Input to
formal verification systems at one point is another kind of
thing. Using it as a top-level spec for compiler
development, either as a target for verification of an
implementation of a compiler, or as a starting point in
automatic design of a compiler by successive
transformations. Contrary points of view?

P. Wegner: I think that maybe we ought to take the position

W.

that the English definition should be the first recourse and
possibly even the final arbiter. That's not to say that a
formal definition isn't very useful. It should even bhe
required and used for testing our programs. I go with the
idea that you have both and require both. The English
definition is the arbiter and the formal definition is there
for validating things as well,

Loper: I don't think it's enough. 1I've had two experiences
of beiny among the first to implement a compiler for a newly
defined language. In one case, we had to implement FORTRAN
IV to obey a public standard, not an IBM standard. 1In the
second case, I was perhaps among the first to try to
implement PL/1. In implementing PL/1, even after they had
completely written their final language specification
documents, that was so far from supplying guidance to the
implementation that I have a section of a filing cabinet
devoted to the subsequent correspondence to find ouc what in
the world they meant when they had written what would

S.

i

31

normally be accepted as a complete and finished languaqge
specification.

Later it became easier (this had heen back in 1954) hecause
the questions had been settled. Two reasons: one, you had
a tradition. Fveryone knew by that time that when a
language said X it really meant Y, so there was no prohlem.
There are things that in reading the FORTRAN definition you
stumble over without realizing that it simply doesn't settle
the issues. You have to know from long experience how the
issues have been settled.

Nelson: 1I'd like to talk on both sides of the guestion. On
the one hand, this ambigquity in the English is a very real
problem. As you said, the way English specs are usually
written probably would not provide guidance to many issues.
If you do an iteration, starting from the English definition
to a formal definition which is precise, then go back and
rewrite the English definition, now knowing exactly what it
means, then you can remove a lot of ambiguity you couldn't
resolve in the first place in English. English being itself
not a formally defined language, you may still not be free
of ambiquities. While it may be the arbiter of most cases,
there might be ones where you'd have to go back and read the
formal spec and say this is what it really precisely does.

Wegner: I think I now agree. The formal definition shoulAd
be the arbiter, but that it's understood that the FEnglish
definition is as complete as possible and that in 95% of the
cases, that will bhe the one that is accepted.

Sneider: My own opinion is that any definition of a
programming language ought to be a top down definition.
Where you look at the very top-most level of the semantics
and use highly abbreviated and symbolic notation at the top
which conveys what's happening without giving the details.
If you want the details, then you look it up in the manual
under the section which gives the specific actions that are
going on at this level of the translation or interpretation
process. That's not inconsistent witnh using English at the
top most level and referring you to details with this or
that section of the further report. I don't see why a
person is supposed to comprehend everything that's going on
from top to bottom in the translation process when he just
wants to get some vague idea of where things are headed.

Crocker: I think you're raising a subtle but extremely
important issue that pervades all requirements
specifications. That has to do with how you fncus on
essential or normative cases as opposed to all of the myriad
of details, many parts of which have to do with boundary
cases and error conditions which are not what a user wants
to find out about upor first reading. It would seem to me
that one of the things we trip across when we try to write
formal definitions of a compiler or languages is we haven't
found a way to hring out the core of what we're trying to
specify in an easy cto read and focused way, and still have
connection with all the myriad of details that must go into
a full formal specification. DNDoes anybody want to talk

e s —

32

about the SRI work? It is the only work I know of that
mentions that kind of issue.

A. Marmor-S$Squires: Are you talking about "Special?' {Yes.]
Special, as I understand it, is not purposely desiqned to
define programming lanquages, but to provide a high-level
non-procedural definition of programming.

S. Crocker: True, and I meant to point to it only as an example
of a specification language which has as its attribute that
it separates normal behavior from error behavior, not that
it's a languaqge specification system. That's an attrihute
(separation) that we may want to have in a formal semantic »
definition system for languages, which would speak to sone 3
of these issues abhout how hig the spec is and how much time
it takes to read it and who's goinqg to read it, who's qoing
to understand it, and hence, what its ultimate effect is
going to be on the community at large.

P. Weqner: Suppose we choose a certain definition style. We
can still write good and bad definitions in that style, and
one of the things that Victor was referring to is that the
definition should be structured in some way, top down, for
example. I'm sure that there is a greal deal to be learned]
in writing definitions well in any notation we care to use.

S. Crocker: How much experience has there veen with formal
definitions?

V. Schneider: I don't know anybody who really has an absolute,
water-tight formal specification of what a compiler is doing
and what its runtime support system is doing at the same
time. That may be too strong, and it mzy not even be 1
humanly possible. There might be someone who could prove
that it really isn't possible to give a water-tight complete
definition. The question then is, do you want perfection or
do you want something people can use? What is it that
people can use? I'm proposing the top down structure
definition of the language.

S. Crocker: One of the driving forces is whether ycu can move
software that's written in a language from one machine to
another machine after you recompile it. How much damage
have you done? Two kinds of answers: either you're
prepared for no damage at all, in whick case you have to
have a water-tight system; or you have to he prenared for i
some and then it's a question of how much, and we get into
the usual haggle. So you have to go back through some
testing and validation. That comes back to some policy
issues ahout whether we re going to manage our way out of it
or whether we're going to have some guarantees. So it's a
question of how close we can come and if it's close enough.

Bt s s i

D. Luckhawm: A siall comment on the amount of experience with
formal definitions. There is no experience with formal
definition of parallel processing. All parallel processing
languages I've seen have no formal definition.

P. Wegner: It would seem to me that on concurrent processing

|
%
|
|

T TS TVARTTATI TANAY LT T WAy e e

33

there are no insuperable difficulties of extending
operational techniques to concurrent processing. A little
bit extra will have to he done with synchronization. Some
extension of axiomatic technigues has heen done.

D. Luckham: I'm not saying that there are any insuperahble
difficulties, I'm saying that the experience I've seen is
zZero.

S. Crocker: How much experience has there heen with validating
compiler construction?

R. Morris: 1It’'s alleged that COBOL's fully validated, but I
don‘t know anything about how it works. Col. whitaker
mentioned this morning that the COBOL people have done it.

Col. Whitaker: The compiler construction is not validated. The
compliler is validated by some 350 plus test programs,
specifically designed for that purpose.

E. Nelson: Having had this discussion concerning COBOL and its
validation system, there continue to be many arguments over
the ambiguities of interpretation of correspondence on that
area. It isn't 1008% decided, there are other things, such
as a Semanol specification of COBOL, as a step toward a
better standard.

P. Wegner: Are you looking for a Semanol specification for DOD1
languages?

FE. Nelson: We've been doing some studies on it.

S. DiNitto: We've talked to our lab director about sponsoring a
Semanol definition of DODl. We can't go the full route. I
doubt if we'll have the funds to do the build-up of the
translator and interpreter so that it will handle NOND1. BRut
we still think it will be valuable to debug the
specification. just by undertaking the definition.

S. Crocker: There's a small subtlety which you've just raised
about building up the translator and interpreter to handle
the extensions to the Semanol language to handle DODI1.

E. Nelson: 1In resolving the questions relative to
specifications there's a question of how much one wants to
describe in high-level terms and how much in low-level,
which compounds the detail in there. For parallelism and
certain other advanced features, there may be for
readability and execution purposes some operators in the
language that directly mean this rather than describing it
in terms of how you manipulate strings,

S. Crocker: Give some further indication of how much extension
to Semanol you'd find useful in describing a language as
rich as nNOD1.

E. Nelson: I don't think there'd he very much of an extension.

S. Crocker: How many people here are involved in compiler

_hy bt

34

construction in one way o: another? [Hands are raised.]
About a quarter, a third.

Nelson: With this nuaber of coupiler writers here I'n
surprised that there hasn't been raised the usual compiler
writers complaint that formal definitions over-constrain
thoi.

Gargaros I have a question for Dr. Nelson. Has TRW looked
at Semanol for defining COBOL?

Nelson: People have looked at it, and believe it is do-able,
though it has not been done. If you talk to us a year from
now we may have it done. The various data structures, table
structures, picture-spec, etc., are different than in other
languages. They don't seem to raise any insuperable
questions in describing them in the right amount of detail
and reaching agreement on what they mean.

Gerhart: 1Is there sufficient mathematical theory to support
any sort of formal definition of parallel processing? Over
the years a theory has built up that at least makes the
definition more believable.

Luckham: First of all, I don't know the answer to that, to

be honest with you. I can tell you what I think at the
moment, which is not necessarily going to be true tomorrow.
Yes, I think there is enough mathematical technique to
develop a specification language for parallel nrocessing.

‘he first thing that has to be decided is what people want
to say about the processes. It seems to me that the old I1/0
specs that would do for procedures no longer do for parallel
processes. Naturally, when you get into a language in which
you're talking about infinite streams of flow of
iniormation, the mathematics of that is problematic, but
solvable. If you have two processes accessing the same
input channel then you get into the mathematics of shuffling
operations or subsequences, though you don't know in what
order the accesses will occur. The mathematics of that is
solvable although in some studies it was ignored.

There is a second line of problems which has to do with
synchronization, which is separahle from the flow of
information. Most well-writter operating systems tackle the
problem. The formalization of synchronization problems may
depernd on very precise programming techniques. My feeling
about the question is, yes, the mathematical technigues to
solve the problems exist. 1It's a question of what people
will accept as standard specifications for processes. Or we
can decide what languages we'll use as a standard.

P. Wegner: This is in the area in which you're working?

[Right.) So you are in fact developing techniques for
specifying modules and concurrent processes.

D. Luckham: What I would claim to be able to produce in the

near future is something that would be adequate for very,
very simple kinds of processes, the ones you would see in a
simple kind of operating system. It is not for the sort of

[P S RPN U PP

et Ll B, e

S.

D.

——————— : Clarity. You spend more time on tryinqg to figure out

35

processes that might evaluate a numerical analysis problem
in some very efficient way.

Wegner: How do you feel about axiomatic definition of NON1?
How complete could it be within a two or three year time
period?

Luckham: T cdon't know. MNo. The desians weren't specifin,

you know. I can tell you where the prnhlems would he, or |
some of the problems I don‘'t know how to solve. I don't
have a full enough picture to give ynu a comnlete axiomatic
definition.

Crocker: From some of the other compiler writers, what is
your preference for specification of a new langquaqe?

difficult issues that haven't been clearly settled than you
do in implementing the ones that have. Only a minority of
my time is spent in implementing the things I understood,

after I found out a little about them. "

Crocker: What do you think of the idea of a reference
compiler? One whose sole purpose is to provide an
operational model of the machine rather than one that's
aimed at efficiency or target code production. Perhaps a
reference interpreter is the right idea?

Luckhan: It would not he extremely valuahle. I would nuch
rather do a program. It's quite clear that if it's written
down, you can follow the source code of the compiler or even
the hbit pattern that is executed,

Nelson: In the development of the lniversity MS=2, they
were developing a compiler at the same time we were writing
the Semanol specification, and we had meetings to resolve
issues and found those most productive. The comniler
writers managed to illuminate several issues for us. We
resolved questions so that what they wrote down on the
compiler spec and what we wrote on the Semanol spec were
consistent.

Luckiham: I'm curious abhout the reference compiler. We're
talking about some formal definition which hopefully is as
unambiguous as you can have. Of the methods of definition,
1 would think Semanol could write answers in the same way as
any particular program could provide answers. The idea that
a wan would go to a piece of paper as you referred to it, is
usually a lot more practical than running through a
particular compiler you happen to have. Having the compiler
should be more of a solution than having a formal definition
that has been agreec¢ upon. wnopefully, you can look at that
formal definition and imply the answers.

Crocker: Why even use Semanol when you have hoth?

Luckham: That's a good point. If the technique isn't able

to be executed, you may have a more difficult time proving
that it is clear.

b i

36

Crocker: So one miqht see Semanol as a languaqge for writing
lanquaqe compilers.

Nelson: What a formal definition can really be looked at is
the compiler that doesn't provide you with any extra
information. That is, compiling for a machine or in an
environment that discusses only those semantic issues you
want to address,

Wegner: It's an evaluator, really, rather than a compiler.
The compiling aspect is somewhat irrelevant.

------- : How do you pose a question to the reference compiler?

(o]
.

Wegner: You pose questions ahout what a program does rather
than about what a program compiles into.

Crocker: So you really want the reference interpreter?

Evans: VDL does that. Not so usefully pernhaps, but VDL
provides you that mechanism,

Crocker: What is it that makes VDL not so useful?

Fvans: It takes a long time to answer any re$sonah1y hard
problem. To submit a piece of program to VNL and work it
through by hand would be a very time consuming operation.

Wegner: I think VDL and Semanol are competitors for a formal
definition mechanism. We could go with Semanol rather than
VDL because Semanol is more recent. Are there any other
competitors for thig kind of definition? Namely, an
interpreter which is also implemented so you could run
things through it. If VDL were implemented you could run
things through VDL.

Nelson: The problem with VDL is that they have the different
sections on what they call the concrete syntax, abstract
representation of the concrete syntax, the abstract syntax
and the abstract machine. They tend to be of quite
different notation and in most cases people have not done
all of the sections of VDL. Most usually leave out the
abstract representation of the concrete syntax. Also, the
abstract machine is unlike the Semanol interpreter. It
actually holds part of the language definition and so you
have a different abstract machine for every lanquage.

Luckham: I just want to make a point about compilation
versus evaluation. We've heen doing some stuff with
attribute grammars. With that point of view. you're
compiling a mathematical function, if you look at it as a
function of the top node nf the program. I think we should
make clear whether we're trying to come up with an abhstract
machine as a series of state transformations and if we're
really trying to say something about these particular
states or whether we're considering the procedure as a
mathematical function.

Nelson: I think that latter point is important and also one

37

of the features that Semanol is based on, a theory of

semantics, whereas, VDL gives the ultimate interpretation on

how it executes in terms of the machine. The programmer is

concerned with describing an information problem and the
programming language ought to have something to Ao with
describing information problems.

T TP N7 - TYTTEITAT e e o ‘

38

Session 3A: Verification Technology-Present and Future ;
David Luckham, Chair 1

D. Luckham: The first thing I want to say is that there seems
to be a strong image of verifiers as a black box into which
the programmer will put a 20,000 page FORTRAN listing with
just an 1/0 specification and out will come "true". Such a
black box will never happen. My view of verification
involves many of the aspects that will be going on in the
other sessions. Programming language design is an intimate,
important part, as is the design of specification languages
and the design of a methodology for documentation.

[Luckham refers now to an overhead projector slide
containing five points which illustrate the relationship
of verification technology to some important related
areas.]

We need to give the programmer the following items: 1) the ?
tools to write a program, 2) the tools to state his

intentions, 3) the techniques for stating specifications, 4)

the theory of how he will establish consistency between code

and specifications, and 5) a system to help him automate

certain aspects of the proof.

Euclid is an example of a programming language design
specifically oriented towards making the task of validating
programs easier. Whether it was a good decision or not, I
don't know. The introduction of typing in the language,

which came a little earlier, is a perfect example of forcing
the programmer to declare his intentions. It turns out that
he declares a lot more when he makes his type definitions ,
than is checkable by the standard compilers, and so we can i
still design verifiers to use that information to check
further what is normally checked at runtime. I believe that
language design is going to tend towards the direction of

more of these non-computation declarations of intentions. I
can see that already, for example, in the Green design.

For specification language design, there are a couple of
things to note. If you want to talk about a database
program for example, you might want to have a language in
which you defined a concept like "cycle-free", tree
structures of records, the concepts of searching and
manipulating such structures, etc. You could then imagine
in the specifications of your program that it would be
natural for you to write down something like "the tree
structure is loop-free." And so one wants to get the
programmer a language in which he can talk about his "higher
level" concepts. One has to design this. One has to design
the means for allowing the program to design its own
specification. Another example would be the language of
model logic. If one is talking about specification of
synchronization problems in operating systems, it becomes
convenient to be able to say "if this happens here, then
it's necessary at some time later that some other event will

39
happen"; "if this process signals that then at some future
time something else will happen"; "if this process waits

for that resource then it will get the signal that that
resource is free." There is now an expanding theory of the
old tense logics in a new light, in the light of
specifications.

Examples of documentation requirements are things like:
what are you going to have to say about a global variable?
In a lot of programming languages, you don't have to say
anything, you just declare it some place at the top and a
few blocks later you use it. For a verifier, you have to
declare it at the point where you use it as a global.
Another example would be: should there be a standard
whereby you have to understand what an invariant for a
searching loop is? Should you have to provide one for every
loop? Should that be a documentation point? These are
examples of what I mean by requirements and methods being
part of the technology of verification.

Now, I will say a little about my own program; it is sort
of a test case. I look at the verifier as just one kind of
program analyzer. Its particular property is that it
analyzes the consistency of the code with the documentation.
I'm making a rather fuzzy distinction between the word
specification and documentation. A specification language
is one in which the documentation is stated; a program
specification is sort of the global external intent of the
program. In the case of a procedure it would be the
entry/exit assertions. The documentation is the program
specification of all the other internal assertions you might
make to explain what's going on internally. In other words,
if in your language you use the concept "loop-free", then at
the current state of rudimentary verifiers you have to
explain to the verifier what the definition of "loop-free"
is. The definition of the specification language is just
the semantics of the concepts in that language. If you were
dealing with sort programs, for example, then you would use
concepts like "permutation", "ordinate range", "preserved in
the range", "greatest element in the range", "least element
in the range", etc. You would actually mathematically
explain each of those concepts. Then your specification
language would be a language in which those concepts exist.
You have to give the definition of concepts to the verifier.

In order to do this analysis, we require that a program be
documented and we require a definition of the specification.
Given all of those things, the outputs from the verifier are
either a proof, in some logic, that the code is consistent
with its specifications and documentation, or that it's not
consistent and you get back some hint as to where the
problem is. You also get back the unprogrammed parts of the
logical conditions and the trace of where the proof attempt
failed. It's this information that is really most important
in developing applications of verifiers, because it's this
that is going to allow us to decide where the problems lie
in the consistency, and which part of the documentation is
not adequate or where there might be a bug in the code. So,

.

40

one of the things that we have to do in verification
technology is develop tools for analyzing the failure of
attempts to verify.

At the present time we are at a very elementary stage in
this technology. I'm not even sure we have the right logic
of programs, but I know that we've got a good enough
language of the logic of programs that we can do quite a few
things. We might be like the Greeks, with the concept of
infinitesimals and no real notation. We need the axiomatic
semantics of the programming language as a pre-requisite for
building the verifier. We need "correct" definitions of the
higher-level concepts in the specification language. This
is so, for example, if you wanted to use loop-freeness as a
concept, you would define it by means of axioms, and then
you would have to go away and think as to whether your
definition really meant loop-free. We also require that the
program be documented. These are the prerequisites.

Wegner: When you say documentation, you mean something
fairly formal? Presumably, the documentation has to be
written according to certain rules rather than just free
format.

Luckham: Yes, I mean part of the technology is that you have
to lay down documentation methods.

Wegner: Could there be a documentation language?

Luckham: There would be a language in which you could define
your own specification range. 1In other words, if you've got
a parser, you're going to want to write a different kind of
specification from a sorting program.

Wegner: 1I'm talking about the documentation. If the
documentation is required for the verification, then you're
going to impose some pretty stringent requirements on what
form the documentation can take.

Luckham: I'm going to negotiate with you. If you're a
programmer and you don't like my requirements then I'm going
to try to program my verifier around them. It's up to us to
decide what we can both live with in the way of
documentation methods.

Wegner: But the thing we agree on would be something fairly
formal.

Luckham: Yes. For methodology, you must have something here
if you expect to get any reasonable answer. So here are
some of the uses of verifiers. The first is, in making the
documentation more precise, you can't get away with sloppy
English and you can't get away with saying "this loop is
supposed to do that" and forget all the end conditions, and
so on. The first thing that happens when you get into this
game is that you have to design rather precise specification
languages and documentation methods. I think that is a
coming discipline. In the future, there will be much more

frysstaiisvionbt o s ey

41

rigorous standards for declaring intention.

Having gotten the program, the documentation, the definition
of the specification language, and the verifier, the next
use is in debugging. That is why failure in verifying gives
you information about where the inconsistencies are. Tf the
reason why you didn't et a verification wan because the
documentation wasn't adequate, then the system forces you to
improve your documentation. Also, if you are following a
top down methodology of programming, and you've left certain
subprocedures external and unspecified, then you'll probably
find that verifying the top-level forces you to change or
modify the specifications on the unwritten code.

Finally, when you get a verification you get a verification
of what you stated. When people say "we've verified an
operating system", or "we've verified a compiler", or
something like that, what happens here is they have a
precise statement of what they verified about a program.
They haven't verified a compiler, they've verified that it
does some particular kind of transformation. They haven't
verified an operating system, they've verified that if
blocking and starvation don't happen, then the flow of
information from the card reader to the line printer will be
as they want it.

I think that nothing will ever be absolutely verified. What
you're doing is raising the level of confidence, and you're
being rather precise about what you have confidence in.
Finally, once you have a verification, that isn't the end of
the game. That's just the beginning. Especially if you're
working with code that you expect to modify, or
specifications that you expect to undergo some modification
in the future. You now have a perfect tool for playing with
what happens when you make small changes. What we're trying
to do here is develop techniques for using and for
programming with such a verifier.

Balzer: Are you referring to your project or this meeting?

D. Luckham: My project. I'm trying to convince you that this

ics 3 much more fruitful way to go. There's been a lot of
work on sorting programs, we seem now to have a reasonable
specification language with about half a dozen primitive
concepts in it. It is satisfactory for documenting and
verirfying most published sorting algorithms, including
versions of heap sort. For pointer manipulation programs we
are able to deal with things like the Shore-Waite marking
algorithm for garbage collection, various kinds of list
processing, single queuing systems.

Back to the type definitions. We have implemented a special
version of this verifier which attempts to prove the absence
of common runtime errors. What it has to do is build up its
owr, documentation, so it contains an analysis phase which
attempts to construct assertions about arithmetical facts.
Those arithmetical facts imply the absence of certain kinds
of runtime errors and then it attempts to prove the

o

42

consistency and if so, the outcome would be you know that
you would not get an array subscript going out of bounds at
runtime; you would not get the access of an uninitialized
variable or a variable with an undefined value; you would
not get referencing of a null pointer; you wouldn't get a
stack overflow in a recursion; you wouldn't get division by
0. It's like an automatic documenter for those programs for
which it is successful. That is, you don't have to supply
any documentation at all for the kinds of programs for which
you are now still required to supply some documentation.

{Unknownl: What do you mean by an automatic documenter?

D. Luckham: Well, imagine that you just have a task error code
and you have no documentation about what the code is
supposed to do. What the automatic documenter does is
attempt to build up documentation at certain points in the
code. ’

[Unknown]: What does it provide you with?

D. Luckham: It will provide you with assertions to the effect
that certain a variable is not zero, or something like that.

J. Prescott: In your formal specification languages, do you
find it necessary to come up with a specification language
for each type of programming, like sort programming, or do
you have one specification language?

D. Luckham: What we have right now is a language in which you
can design your own specification. Basically, we have one
specification language, but it allows you to define more
concepts, to axiomatize more concepts. It's like a
predicate logic in which you could define arithmetic or
something like that. You could define the theory of
sorting, the theory of database management, etec. I don't
wish to defend it as anything more than a rather rudimentary
specification.

In order to build a system like this, I can name for you
some support techrnology. This has to do with the
implementation of special purpose theorem provers and
algebraic simplifiers. For example, if you're dealing with
a programming language which has standard data structures
such as arrays or pointers or files or lists, then you'll
probably find that you need to have a special purpose
theorem prover for each of these standard data structures.
And so there is a support technology in the design of those
theorem proving algorithms.

The next thing that happens is you find that each of these
special proving boxes have to cooperate very efficiently
because they influence each other. Something that the array
prover finds out may be of importance to something that the
arithmetical prover wants to know, so they have to cooperate
and they have to pool their knowledge. This gets you into a
concept of cooperating special purpose boxes, and the theory
of how you design boxes. Finally, you have the design of

D.

43

the specification language, which here I've called the proof
rule language.

Down at the bottom of all of this are various classical
problems that also require solution of some sort for such a
verifier to run in real time. We need to improve certain
strategies, such as garbage collection. We need to work on
printing formats which eliminate common sub-expressions or
don't allow them to occur in the first place. Only just
last week by going from the MACLISP garbage collection to
our own garbage collector, we improved our runtime
efficiency, in fact, we doubled it. There's a lot of work
to be done on the strategies of when you collect garbage and
where you go to look for it.

A few facts about the actual system. 1It's a PDP-10 MACLISP
system of 100K PDP-10 words. There is a user manual we're
writing now, and we're attempting to distribute it to a few
selected ARPA sites because we think we're now at a stage
where we can give it to other users without causing too much
ill-will. We would like the feedback. The major problem in
transferring it across the ARPA network is the character set
compatibility.

[A brief discussion on cha:i acter set compatibility
ensues. Crocker observes that Luckham's problem can
probably best be worked out by Luckham.]

Luckham: The language accepted by the verifier at the moment
is an extension of PASCAL and includes union types instead
of variant records and also modules. We're working on a
theory, starting from scratch, writing a compiler and
working up the structure it should have so that we can
specify it, and verify some properties of it. We're doing
this for a mini-PASCAL compiler that includes gotos,
iterative loops, procedure calls, block structure, and
arrays, but not pointers. Operating system verification is
something that I've gotten interested in and it requires a
study of all of the problems I mentioned on the first slide,
i.e., language design, specification languages for
concurrency, etc.

[(Unknownl: What about runtime error checking?

D.

R.

Luckham: We're certainly trying to extend that and look at
the sort of runtime errors one will get into with, say,
union types and module interfaces. I think now, my own
evaluation of this project is that we're at the point where
we would like to try to do an in-depth study of a PASCAL
applications package. I would like a database package. We
would like to take a group of between 15 and 50 programs
from some place else and see what we can do to develop the
specification language for them, develop programming
methodology for them, debug them and verify them using the
system.

Balzer: You're saying that you believe your system, when
operated by the developers, that is people who are experts,

44

is capable of handling an existing package of PASCAL
programs.

Luckham: No, I'm not saying we can take existing user
programs from other places and drop them in the top and get
answers out the bottom. 1'm saying that we're about ready
to start looking at "can we restructure these programs,
develop the specification language, develop the methods of
documentation, document the restructured programs, and then
debug them?"

Balzer: So, in other words, you're saying that it's capable
of verifying real applications when they are done with the
right technology.

Luckham: I'm ready to try doing it.

Schneider: I have two topics that you didn't address. One
of them is the use of exercisers for verification. In
particular, there was a recent paper in the Communications
of the ACM on the subject of proving that test cases are
sufficient for testing error-freeness of the program. I
don't know if you have any comments about that.

Second, there are some theories at the present, I won't call
them anything more, about the information theoretic
structure of programs. There's one by Gregory Chatin of New
York University, for example. Another theory was originated
by Maurey Halstead of Purdue University. The theory goes as
follows. When you get past a certain point of complexity,
you have a chance for an error. If you carry this theory
forward, you can predict the number of errors remaining in
the program after delivery as a function of the number of
errors found during the production process and the size of
the program. It seems to me that that is part of the
verification process. At least disprovinc that theory is
part of the verification process, or possibly using it in
some productive way.

D. Luckham: I believe that the theory, as you have explained

it, is quite true. Let me deal with the first point and
then the second. I have not read this ACM paper, but some
of my students did, and they went so far as to rigorously
specify and verify the example programs in that paper in
about half an hour, from start to finish using my method.
And I think they might even write a letter to the editor
about it. This is the paper on verification by complete
testing. I'm not saying you shouldn't use test cases, I'm
saying use anything you can get your hands on. What this
does is zero in on where your problems are.

Now, as to your second point, it's quite true that when you
write a messy program you have a hard time specifying it.
In fact, the specifications tend to look about the same as
the program. You have a much harder time verifying it.

Balzer: The theory about the number of errors predicts that
when you increase the size of each procedure or each task,

45

you're programming beyond a certain point and you're going
to have errors in it. The whole idea is to break things
down into manageable pieces. The theory says that this is
the best way to do it.
' 1
D. Luckham: Great. Now we've got this nice new module
construct in the language and we'd like to understand how’ to
use it to break programs down without necessarily making
them less efficient in runtime. For example, I have a
benchmark program from CDC used to test their PASCAL
compiler software. It computes the youngest uncle of a
person from a database of people. Dave Fisher made the
point last night that really the problem is not runtime
speed but memory space. That's the sort of thing that would
happen with an applications package from an outside source.

J. Cross: Suppose we imagine your whole system to be
implemented for the common language. And suppose you give
this system a program to be verified, and the system works
for a while and then comes up with all sorts of information
such as "this variable cannot be accessed until it is
initialized." Such information is obviously of great
interest to the compiler which is trying to emit gocd code.
Do you have any proposals about how your tools could
communicate that information to the compiler?

D. Luckham: No, I don't. We are starting to implement the
language that we have now. In other words, when you give a
program to a verifier you go through the first ten percent
or fifty percent of the compiler, namely scanner, parser, to
an internal format. Now the code generator can use that
just as easily as the verifier. What we have to do to go
from a verification to a compiled run is to write the code
generator. That's what we're going to do. Then we're going
to try to research the issue of how we might alternate
between code and influence the code generated by the code
generator. Right now I have just not thought about that.

My students may in fact be further ahead on that than I am.

S. Gerhart: It seems like it might be time to forget the notion
of a compiler, or to revise the notion of a compiler.
There are lots of things you can do with programs that can
be considered verification, optimization and so forth. It
might be worthwhile sometime in the future, in the context
of this environment, to go through a series of tools, see
where they overlap, see where they might be partitioned up
into a finer set of tools that when combined back give the
components we're used to seeing like verifiers and
compilers, but, in fact, overall achieve a much greater
effect. Someone brought this up yesterday; the front end
of a commmon language should be shared among various tools.
The point I want to make is, simply, there's a lot of
fuzziness in the notion of the compiler and the verifier,
and we ought to think about what the terms might be to be
revised to be.

D. Luckham: I tried in a recent paper to talk about the runtime
error checking version as sort of a compiletime

46

verification. My coauthors forced me to take it out because
compilers don't normally do this and it would confuse tne
readers as to what 1 meant by compiletime verification. 1
agree with you, I tried to do it. !

S. Gerhart: Transformation is a good example of scmething that
would be highly useful in a context of verification. You
can prove a program correct and then transform it,
preserving the correctness, to ancther correct program. .
That might be the sort cf thing that fits into a compiler or
a separate component. It's very fuzzy.

D. Luckham: On that point, I don't wish to adhere to this
particular verifier design as something that's going to
persist in the future. I think starting from very high
level specifications and gradually transforming them into
code that some system understands might be a fruitful line
of attack.

R, Glass ¢ I'm a little disturbed. 1 see an enormous dictotomy
between what we've talked about so far and my perception of
verification as it currently exists in the greater computer
community. My characterization of what currently exists is
that we tend to be using the worst of the late 1950's
technology to verify a computer system. We're so far from
the techrology that we've discussed here that I'm not sure
it's achievable from where we stand without combining some
intermediate steps. I guess I'd like to challenge this
group to help find those steps.

J. Bladen: 1I'd like to add to that with a question. Are you
saying that you have the technology at the present time to
prove a scanner/parser version of DOD1 where we could say
that this root compiler is a proven piece of software and we
can predict its characteristices? Is that available within
the scope of DOD1?

D. Luckham: What we have done is verify some standard
properties of the scanner and parser for a PASCAL compiler.
Now, what that would mean would be that it should not be too
difficult to do the same thing for the scanner and parser
for DOD1.

J. Bladen: One of the hangups the Air Force has on a standard
compiler is inability of proving the compiler itself. If we
can get some sort of indication that we can prove a
compiler, then there's a strong possibility of changing the
whole way of doing business within the Air Force. .

S. Crocker: I don't understand. You're saying that the Air
Force doesn't want to use higher-order languages because ’
they can't verify the compilers with them?

[No reply.]
S. Di Nitto: One criticism that is made of these higher order

languages is that people cannot get as close to the machine
as they could with assembly language. ... Not only is your

[€2]

D.

S.

47

program logic a possible source of error, but your compiler
can do something to screw up the language along the way.
There's this mistrust of the compiler. The point Jim Bladen
was trying to make is that it would be great if we could
have something that would certify that this compiler
produces 100% correct code in every case.

Crocker: This strikes me as very, very strange. Independent
of any verification technology, a lot of the world has
experience with using compilers that were written by
reputable organizations. I'm sure there are compilers with
bugs in them, but it's a lot easier to debug the compiler by
brute force over a long period of time and trust it, than it
is to debug every instance of assembly language code.

DPi Nitto: Over a long period of time -- nobody wants to be
the first to do that. Why should your project be held up
while the compiler is being verified?

Crocker: You’'re doing the opposite; you're repeating first
experiences time after time.

Pi Nitto: An unverified compiler is going to cost the Air
Force a suit, because if we hand a government furnished
compiler to a contractor and_ ne says "oh, look your compiler
just errored, and I'm going to have to charge you another
six million dollars" your whole project is over cost.

Crocker: The problems the Air Force has clearly have nothing
to do with technology, nothing to do with verification or
languages, but only to do with management.

Ci Nitto: Exactly. The technology is there, the management
is not.

Schneider: It was said earlier that DOD funds about half the
software work in the country, and it behooves us to address
these problems also. There is a problem when you get a
contractor doing a one or two million dollar project, and
that contractor also gets a new compiler that hasn't been
wrung out. And the compiler not being wrung out contributes
to a six month slippage of that project, the software may be
one or two million but the rest of the project is another
ten million. That's a lot of money.

Luckham: Sure, but no reason not to wring it out. [Other
agreement.] You need a technology for wringing it out much
faster, and for being much more certain about it earlier in
the game.

Di Nitto: Of late there has been a lot of interest in using
higher order languages. There are a lot of languages, the C
language for example, that have been around for a while.
People have used it. It's not on the standard list, but
we've tried to talk people into developing a compiler for C
on the 11/45, They say, "oh no, a brand new language, we'll
go with one that's been proven out." It's a new type of
battle. Quite frankly, it isn't a management problem, it's

48

i a problem with the bloody contractors where the compiler

becomes a scapegoat. When it comes to a court of law, who

understands compilers? The contractors can say something

i like "the government gave us this thing and it screwed us
all up."”

| [Unknown]: Just to understand the magnitude of the problem
here: we are using two of the most reputable compiler

. builders in the field in our project. The Jovial J3

compiler turned 1000 errors in the first three years of use.

In our B1 project, the J3B compiler turned 500 errors in the

first two years of use. We believe those are typicel

figures for today's technology on the well-verified

compilers. Those compilers have both been through the

validation process as defined by the Air Force and passed,

' prior to the turning of those errors. 3o there is a

; technology problem in the verification.

S. Crocker: Even if one believes all of that, what are those
figures in contrast to the enormous number of errors that
you have to be inserting one at a time, by hand, into the
assembly language?

[Unknown]: I'm not arguing that we should reject higher-order
languages to go to assembly language. I'm just trying to
say that there are problems with the present

‘ state-of-the-art. 1In the Air Force you have to sell
F everything you do, and right now we cannot sell the concept
; of a proven compiler.

D. Luckham: Just to answer your original question: the answer
is no, I do not have a new technology for compilers right
now. We're working on it and I would be hopeful of a
reasonable approach to verifying compilers in the next year :
or two. But they might not be DOD1 compilers because I |
think there are certain constructs in DOD1 that compiler
writers themselves are going to have a time with.

W. Teitelman : I want to make two points. One, where you said
that your programmers had a great deal of confidence in
assembly language because they could see the actual octal
instruction that was produced. Implicit in that is somehow
the idea that each instruction is going to execute correctly
every time. For example, that there isn't going to be some
sort of machine failure. That does happen. Or, in the case
of the machines we're coming ocut with now, where most of the
instructions are microcoded, very often you'll run into some
peculiar problen which just happens to relate to some timing
function or some collision on some who knows what, and the
prcirammer that is writing the program looks at the program,
and the program looks right, and he says "it works, I mean *
it should work." Then he runs off to the machine guide and
says there's a hardware failure. 1In the same way, a person
writing a program in a higher order language, when his
program doesn't work, runs off and says the compiler didn't
work. The probabilities in those cases are usually
something like 95 or 98% of the time it's not that problem,
it's higher up the line.

T Tt o o e B Lol SR 2 GO i s T R

T T o ¢ vy

49

The question with the compilers is what sort of risk are vou
willing to take in terms of what the Lenefit is? In the ailr
Force case you don't say, "we're not poing to release a new
plane until we've proven it's not going to crash." I mean,
there's a certain period of testing beyond which yvou say the
advantages seem to outweigh the disadvantajpes, or we're
willing to accept this risk, given that there is a certain
level of certainty. Then you go with it. You have to take
the same pragmatic approach with compilers. If you wait
until you can say that they are absolutely 100% verifiable,
you're giving up a lot of leverage right now.

J. Cooper: You missed the point of enforcing a compiler on a
contractor. Even if there's only one bug left in the
compiler after, in the case of the Navy, nine years of use,
if it turns up on a Boeing contract, Boeing can then say,
"Hey, because of that bug it cost me six months and three
million dollars."

W. Teitelman : I also want to say one more thing. In spite of
the error rate that we found on our compilers, we also felt
that the experience of using higher-order languages on those
projects was totally successful. We succeeded in spite of
those error rates.

On the contractual question, we contracted with those
compilers ourselves so there's no turning face on the
government for a faulty DOD compiler.

S. Crocker : Plus, the verification of the compiler isn't going
to solve the general problem that the contractor has a claim
against the compiler if the compiler produces code that is
too slow or takes up too much room, or the compiler takes
too long and burns up too much machine time compiling.

These are problems that are not directly addressed by any
verification technology that is being developed. Such
issues also open the door for a contractor to make somewhat
unrelated claims. It sounds like a very good game for a
contractor and a sort of lack of confidence in the game on
the Air Force side.

J. Bladen : I think I can safely say that if we had a proven,
verified compiler for the DOD language, that the Air Force
would consider going to a standard compiler. This is based
on inputs that I've had from people within the Air Force.
Right now, the reason we haven't is that the technology does
not exist.

D. Luckham: Let me be quite clear about this: the technology
is not here yet. 1It's a research area. Fairly simple i
compilers may be possible in say one to two years. For a
compiler of the difficulty of DOD1 it may be five years
before you can prove substantial properties of it.

R. Balzer : 1I've sat through similar sessions before on the NSW
projects. There again the whole reason foir the project was
to inject new technology into the existing DOD environment. |
A lot of the issues we faced were technical but the

S.

P.

D.

S.

D.

- combinations of these two notions which I think would give a

50

overriding ones were managerial in nature. Steve happened
to be the ringleader at that point in time. He spent a lot
of time dealing with procedural, procurement, and
contractural issues relating to the way DOD went about its
software business. 1 think there's an awful lot of
opportunity there to change things, given that we can
provide some technology. 1 think the issues are outside the
realm of our set of competence in this group to deal with.
Maybe there ought to be another set of people convened to .
talk about how, if certain technological advances are made,
the military ought to restructure the way it does software
and hardware computing business. I don't see the advantage
of continuing this line of discussion with this group of
people.

Gerhart: From my standpoint it's not proving alone, and it's
not testing alone, but it's some combination of those two,
combined in terms of testing some components of the
compiler, proving some components, rather than an extreme
amount of testing or proving. There are all sorts of

much higher degree of confidence, a much more effective
technology, than either the o0ld ways of testing and the new,
not yet always achievable, ways of proving. It's absurd to
split these two completely from each other, when, in fact,
there might be a very effective combination.

[During the course of some scattered informal discussion,
a brief mention is made about the verification of
microcodes. No realy substantive issues are discussed.]

Wegner: I was rather impressed with the remark that although
the Jovial compiler had errors, they were able to
successfully complete the project. I think that maybe the
DOD people are frightened by errors in compilers.
Accordingly, maybe we should instead of just living with
compilers that have errors in them, we should increase our
level of confidence in being able to handle errors. Now, in
law there's a maxim that the amount of force used committing
a felony is a dimension of the threat. Similarly, when
there's an error, the amount of effort in handling the error
should be comiserate with the error, and this should be
written into a contract in some way. We should increase our
understanding of how to handle errors, and here again we
need to understand the mechanisms for maintenance and
handling of errors. Probably the horror stories are not due
to errors in the compilers but due to the management being
unable to deal with errors. We should tighten up on it. |

Luckham: It is possible to contractually specify the degree ‘
of effort which you apply to particular errors by defining

something called the priority of the error and assigning a !
schedule of requirements which satisfy the repair of that '
error,

Crocker : What is your favorite list of problem areas in |
DOD1 that are likely to be difficult to verify (or compile)? |

Luckham: Modules, dynamic invocation of processes, exception

51

handling, for starters. 1In the case of the Green language
there is the CONNECT statement, not to mention generic
routines, parameters to processes, among others.

R. Balzer: In other words, you could handle assighment
statements!

52

Session 4A: Technology for Compiler Validation
Victor Schneider, Chair

V. Schneider: WwWhat I propose to do is bring up the sectinon »f

PERBLEMAN that has to do with conmpiler validation 'Section
5.21, for this is my one chance to stan? un and say what T
think about the subject. I have two speakers who will
present their outlook on the subject, Susan Cerhart and San
DiNitto.

[Schneider goes on to summarize section 5.2 of PERBLEMAN.
In addition he presents some of his personal viewpoint on
compiler validation. He first observes that in order to
validate a compiler it must be defined in some formal
sense. His particular bias for formal definitions is
towards attribute grammars and translation grammars.

Schneider further suggests that it is useful for
validation purposes to define some abstract machine which
is the taryet for the compiler. Such a machine would
cover a class of computers that are expected for DOD1
application areas. He then concludes his session
introduction with the following remarks regarding the use
of an abstract machine to aid the validation process.]

«.«. The thing that I'm driving at here is that ... it is
possible to specify the translation so that reqardless of
the algorithm that you use for doing the translation, we can
expect the object code sequence in the abhstract machine
level to be the same for different translators. So, ... one
way of validating would bhe to feed in a series of test
programs and verify the abstact machine bhetween compilers.
And then, ... showing that the mapping from the ahstract
machine to the target machine is correct is a way of getting
at the final pronof that the compiler is correct.

Sites: I completely agree with that approach, but if your
verification compiler says that when I compile a proqgram I
Jet very specific abstract machine output, why in the world
would you want more than one translator?

Schneider: As far as I'm concerned you could have written
the translator in its own language or in some other language
that is more easily available, like FORTRAN, and move it
around.

Glass: I think what you are saying is that every single
optimization of all the processors has to be identical
because otherwise you won't get identical abstract machine
code.

Schneider: There is some optimization applied in the
semantics here, and you may even conceive of an extra pass
that's standard that does ahstract machine code
optimization. But up to that peint, you've qot a standard
compiler. And after that point you may have some post
optimization, but that's a very specific set of
semi~localized transformations on the actual object

R.

V.

Col. Whitaker: 1Two things that bother me. The abstract machine

v.

R.

V.

code

Glass: Would you say tune abstract machine code is bheing
checked, or are you talking about the lanquage object code.

Scheider: I'm talking about the object code.

wegner: Are you suggesting the abstract machine should be
standardized?

Schneider: Yes. 1It's a DOD1 abstract machine.

Wegner: In that case there seems to be a concensus in the
previous meeting and in this meeting, and it might turn out
to be quite important to standardize

Schneider: We have enough models in the past already. There
is the Janus system of Rill Waite and there is the PASCAL
abstract machine. There is no reason you can't talk about 3
doing that. And once you get down to that level, you are

not that far above any varticular target machine that you
are aiming at.

wegner: You can talk about doing it but then aqreeing on the i
specific thing

Schneider: I was proposing this as a model for setting up a
validation process. If people have alternative technologies
that will work as well without assuming an abstract machine, 1
that is fine, I'd love to hear it.

that you want to go to for different real object machines
may be very different for something like a vector machine or
what have you. Optimization may be very different if you
have to revectorize the whole thing. Another thing, as you
pointed out, if you were going to validate down to the
abstract wachine level and make an abstract machine, then
obviously you just take the whole thing into a compiler.
That is the technique that has been done., It is the
technique that not everyone is happy with because some of
them don't generate very good code for the strange machines.

Schneider: I was talking about classes of machine. T see it
As a very valid thing to talk in terms of a class of
microcomputers and a2 class of minicomputers. I realize that
there are qreat differences hetween Cyher 70's and IRM
379's, for example.

Sites: 1I'm going to talk a hit tomorrow morning about
existing Pascal technology. In fact I'm working on an
optimizer for the abstract machine level, which is machine
independent, from which we will generate good code for the

Cray-1 and the LSI-11. I consider those to be reasonable
extrenes,

Schneider: 'The main problem in getting something done is
finding a closed form. A closed form is always a
simplification. You take all the rough edges and you saw

54

them off, and you say, "I'll take care of that tonorrow." If

I can take care of the close form first I've got that much

done. And I can call it a partial success anyway. The

minute you start throwinag special cases at me T say, "Yes,

they exist™ and "No, T don't want to handle them today." 1

alsn say technoloqgy of formal lanquaqge specification is

heing strained when you try to handle every special case

possible. It is really much simpler to conceive of a class

of machines and a sinplified syntax and attrihute qrammar '
approarh.

{Susan Gerhart now begins her presentatinn.]

S. Gerhart: 1'd like to go bhack to some first principles since
this morning's session on program verification, in the sense
of proving, was somewhat terminated. 1I'll continue a tittle
in that vein. 1I'd like to take the position that the best '
type of validation would really be some combination of
testing and proving. The reason for making this claim is to
try to get you to think about some combination which might
be wore effective than either one individually. Of course
the problem is that most of us are experts in one field or
the other Proving is of course newer and very
tentative. ‘fYestiny is older and since we are kind of
divided up into two camps, the testers and the provers, I
just want to raise a point that may he worthwhile to think
about. [viz.,] an effective combination of testing and
proving.

g

s —E

For example, some combinations might be to, instead of doing
an extreme amount of either one, do some moderate amount of
each sort in parallel; a moderate amount of testing, and a
moder ate amount of proving in the usual way on all parts of
the compiler or whatever proqram you're working on. We
might also think abhout doing one or the other in the cases
where, if we could determine this, each one is most
effective, most appropriate. Or we might actually look for
some sort of unusual combination of the two of them. We
might think of doing testing and then based upon the results
of testing continue with some sort of a proving arqument.

Or we might, and in fact there are some theorems that
indicate that this is feasible, look for general types of
proofs which tell us that if we select a certain set of test
data and if we get the right results on that, then in fact
the program will be correct. There might be some novel
combinations here which just haven't yet been explored.

why should we do both? Well, testing happens to have a lot
of strong tools. Just to be provocative, I might say that
this might be a case where tools are in fact dangerous
because there's not a whole lot of theory in testing which
tells you why one tool is better than another tool, or one
strategy for testing is better than another. There is, in
fact, a very weak (embarrassingly weak) theory hehind
program testing. Proving on the other hand has a strong
theory but of course it's very hard to carry out, and the
tools are currently quite weak. So we have this prohlem
that testing, which is done all the time, isn't all that
well understood. Wwhereas proving, which is fairly well

L alal

55

understood, is still very hard to cfo. But, in fact, I think
if you look at them a little more yon'll find that there are
various ways that they really have conmplimentary
capabilities in terms of ability to detect errors, or
ability to convince someone that the validation process has
been yood.

... Based on an intuition and what we tried to understand
about testing, there are a couple of approaches you can
take. One is the black box approach, selecting data,
working from the specifications but not necessarily getting
into the internal structure of the program that you're
testing. Another is faced in the opposite direction,
working strongly with the structure of a program. For
example, trying to exercise all parts of it but not
necessarily being so concerned with cases that might occur
or be expressed more naturally in terms of the
specifications. It seems like the most effective way of
testing just in a very general sense, is to work from
specifications, hacking that up with some sort of monitorinag
of the results of executing those programs, supplementing
what you feel that you have missed in terms nf exercising of
the program with additional data.

[ferhart discusses the classes of proqrams that can be
used as test data for compiler validation. These include
correct programs, "almost correct programs (i.e., those
with subtle errors), and grossly incorrect (really
bizarre) programs.)

... There are, of course, a whole ranjye of testing tools
and it certainly seems to me that to say that you've
validated a compiler when, in fact, you may not have ever
executed some statement of a program would be totally
absurd What I'm suggesting is that the full range of
these testing tools which are available for whatever
language the compiler is written in should be applied to it.
And finally, as sort of a certification aspect of having
people really look at the test data that is selected, I
think there's intuition and there's a little bit of theory
which would allow you to do a pretty fair inspection of the
test to judge the quality of those. And the test sets of
programs might actually grow also, as for example if one
compiler passes the validation test and someone later finds
an error by trying to compile a certain program, that
program should probabhly become, thereafter, nart of the
validation test set. Another aspect is that, of course, if
a compiler's ever to be modified or to bhe uncderstood, even
though it may pass the above test, it should also be well
enough structured that it can be maintained sn that the ~=ode
of the compiler should, in fact, also be read.

Turning to program proving, there's really a whole different
set of issues that come up which are worth looking at both
from the standpoint of proving and testing. When you try to
prove something you have a major task which requires you to
factor both what you want to prove and the components that
you've proven about in as many different ways as you
possibly can. You simply have to break down the task. You

b it

56

can't talk about proving a cowmpiler in its entirety. But
another way of thinking about factoring this process is the
various properties which you might want to prove about the
compiler. For example, you might want to know that a set
two of programs that the compiler accepts is equal to the
set of legal programs in the language, according to the
semantics. You would like to know that if a program is
accepted the compiler will produce code for that program.
This sounds sort of trivial but when you talk ahout various
space requirements it may be a fairly complex thing to shnw.
If a program is accepted, and of course this is the major
thing that you're concerned with, how do you know that the
generated program is equivalent semantically to the source
program? And you minqht want to hreak this up to make it
modular, the run time package being separately proved. So
there are lots of different ways of factoring the properties
to he validated. Again, some of these might he dealt with
by proving; some of them might be dealt with by testing.

Another way of factoring this task, and I think that this is
really important, that the compiler is a system of
components. We're used to thinking of it as one big sort of
a wonolithic entity. But it uses a lot of data structure
modules and those data structures are not all that peculiar
to compilers; they're used all over the place. Various
tables, trees, streams of code, streams of characters. You
can think of a compiler in much more abstract terms than it
often is. Algorithms can also be broken out, for example,
for parsing, register allocation, and optimization.

Breaking all of these down can make the task of proving much
more feasible. For example, if we were to really try and
verify a compiler, I think we would go at it by taking these
components one at a time. People have already studied trees
extensively as data structures; they've studied various
types of transformations on programs which correspond to
some of the optimization algorithms. Tables and so forth
can he verified independent of conpilers if they are
sufficiently generalized.

[Gerhart briefly mentions some proof strateqies which
make use of program transformations.]

I've just tried to mention a few of the different aspects »f
testing and proving and I think it might be worth looking
at, in terms of a long spectrum of time. some combination of
these two.

Youny: The preliminary PEBBLEMAN document talks about
compiler validation in terms of testing and you've
introduced an alternative method, if you will, one of
proving or some combination of testing and proving. It
seems to me that everytime you change the object machine or
the interface with the target machine, such as the operating
system, you're going to have to go through the whole process
of retesting the compiler. Do you think that we have a
technology for determining the most cost optimal method of
validating compilers? How do we know that a combination of

testing and proving will test and validate it entirely? Do
we have such a thing?

57

S. Gerhart: No, of course we have no real cost measures
whatsoever on proving except it's almost infinitely costly.
But testing is very costly also.

R. Young: 35S0 how do we decide the trade-off?

S. Gerhart: I don‘t know but I think that it is worth thinking
about . Just take testing for example. How do you know when
¢ tu stop testing? How do you know how nuch test data 1s
enough? And if you don't know that, then the other sort of
cost benefits of proving are also hard to factor in.

——————— : I have an idealistic question. 1In the lony run, in a
program which has been proven or in a module which has been
proven to be correct, what is the role of testing for such a
module other than performance kind of issues? Doesn't
testing sort of disappear as correctness becomes more
formally achieved?

S. Gerhart: Okay, I would never qgo through a biq proof effort
on something that hadn't been tested first, Testing is a
very effective way to get out the real Adumb-Adumb errors.

But T think that proving can qgo much heyond [testingl in

3 terms of confidence. Now if we had a sufficient theory in

3 testing then that might not %e true. Rut lacking a theory,

it's very hard to draw stronqg conclusions. So T would think

of proving as heinqg a phase which follows testing. PRut you
can use proving for lots of different reasons, nerhaps the
least of which is to produce a proof. You can use it when
you need to understand something very. very well and you're
finally ready to formalize it completely in terms of
specifications and really trying to put together all that
you know about a subject. A proof extracts all the
knowledye that you have about a subject so you can use
proving when you have a great deal of understanding and are
really ready to get that all down once and for all. That is
when it may be most important to attempt to prove--to
increase understanding, to force out kinds of reasoning that
you might not come up with at all during testing.

V. Schneider: We have two things here by the way. One is that
the compiler is the same as the specifications of the :
compiler. And the other that the compiler generates correct '
programs. Just because the compiler is the same as the
specification doesn't mean the specification is correct. 1

S. Gerhart: Right. So correctness ... is a matter of 4
consistency.

J. Knight: You said there was no :theory ahout the neneratinn of
test cases. Suppose that you were to challenage everyhody at
this workshop to submit one test proqram when the lanquaqge
is finally defined and ask everyhody who was here to he as
devious as they possibly could be and as challenaqing as they
could be. How good would the compiler finally he if all of

] those programs went through it and checked out? I suspect
there's enough brain power and hloody-mindedness in this
room that it might well beat a very good compiler.

T T YT T vy

S.

.
Ve

S.

wn

58

Gerhart: I think that's right. Testing very often is done
trying to confirm that the program does the right thing so
you stay away from the data which might show that it was
bad. In fact, testing is most successful in an adversary
sort of situation where you're really trying to heat a
program to death.

DiNitto: T really don't agree that having everyone at this
conference generate test prograns would give you qood
results. We've seen cases where a well-used compiler over a
period of ten years still had bugs. ... One machine, the
1,04, was almost ten years old and we counted five errors in
the syntax analysis package. Now you would have figured
that that compiler would he correct in at least the syntax
analysis portion. The same compiler was found to have bhugs
in it Auring training courses.

Gerhart: Well, one of the problems often is that people
don't know what the compiler is supposed to produce. So
those errors may have in fact been recurring over the years,
but without sufficient specification or sufficient clarity
as to exactly what was supposed to happen, they may not have
been recognized as errors until this point. 1Is that
possible?

DiNitto: I assune it is, yes. We experienced this in a
case. An error can he there for quite a long time. And I
think it's all the more important that we get it out.

Gerhart: Well, let me raise another point. Maybe you can't
expect to ever have a perfect compiler. What is the level
of tolerance which you can accept and what are tha measures
that you might bring in to allow you to live with just a few
bugs?

DiNitto: We set a standard in the Air Force for let's say
K-3. It has to pass our set of validation tests ... 170g,
We used the compiler which passed the same tests and there's
been in the neighborhood of 5f-78 bhugs. ... T don't know, is
59-70 good or bad?

Schneider: 50-71 during the development process, during the
validation process, after the final week?

DiNitto: After we accepted the compiler.

Session 5A: Compile Time Tools
Martin Wolfe, Chair

M. Wolfe: I thought of all the tools used at compile time, and
I came to the realization that obviously the compiler
happens to be one of the most important. So what I would
like to do is discuss what we expect from a compiler and
what are the implications of these expectations of those
requirements on the structure of a compiler.

o e e A TN VI U (Rt T TR T~ O

o ——

The first thing you could look at is what a compiler
provides; what are its outputs. Cf course a compiler can
produce object code. Rather than call it object code, it
might be better to call it code for a virtual target
machine. The reason for this is we might have trouble
separating that part of a compiler which is runtime support
for a bear machine versus that part which generates what
might be called "actual" machine code. For example, for
machines with a sophisticated operating system, much of the
runtime support will be part of that operating system rather
than part of the compiler itself.

The compiler should also produce documentation aids. What
are documentation aids? Object code listings, for example,
source code listings, error messages, symbol tables. But
what do we mean by these and what format should they be in?
If you look at object code listings, should they have a
correlation to the source listings? In source code
listings, perhaps statement numbers should be indicated as
well as variable scoping, typing, etc.

Whether we standardize error messages or not can have a
tremendous impact. If we say we will have to have standard
error messages then we may have impinged on the parsing
technique one uses. For example, we might have to detect
errors at different times, or if you use one parsing
technique, an error might not be detected at all. Perhaps
we should set guidelines to the implementer of what should
be the format of error messages. For example, you might
want to say that error messages should be in a language that
relates to the source code. It shouldn't be that you have
to look in a table to find out what the error is. Now that
might have impact on the size of the machine that you want
to host the compiler on.

T AP PGP LA 1A 1 O e Aroenfp 2 e

There is a whole range of tools that can provide statistical
information. Should they be part of the compiler or should
they be separate tools? A compiler might provide
information on the the amount of resources consumed at
compile time. Other issues include: should we provide a
restructuring tool that reformats the listing in some way,
indicates program control flow, data flow, etc? Should the
compiler do full type checking and/or interface checking?
Should a syntax-checking text editor be part of the compiler
or should it be a separate tool?

These are some of the issues that I'd like to discuss this

60

morning. To start off, I have two speakers. The first is
Captain Bladen who will be followed by Dick Sites.

J. Bladen: Unfortunately my briefing on the way we planned to
do this within the Armament Lab is back on my desk at home.
Maybe that is where it belongs. We at the Air Force
Armament Lab have taken the position that the best way to do
business with the small computers used in missiles is to
have a standard retargeting compiler. My definition of
retargeting is that you have a parser and scanner
combination which makes up the compiler itself. You then
have an intermediate language which inputs to a code
generator. The code generator is a swap-out item so that if
you write the source code program in JOVIAL and you want it
to run on the INTEL 8080, you load in the code generator
only for the 8080 and target your program to the 8080. You
may then change vendors to some magic computer, and instead
of going back and regenerating the program, it's done now.
Instead of writing new software, we will simply swap in a
code generator for the magic computer. There are a lot of
implications in this statement and one is that we are going
to have a standard compiler. If any changes come to the
language we'll make those changes to the one compiler; it
will be automatically reflected throughout all code
generators, all implementations.

(Bladen's work in this area is discussed further in his
position paper, as well as in other conference sessions.]

J. Knight: What you describe is precisely how the MUST program
is organizing its compiler. We have an Avionic programming
system which is organized with a standardized front end with
multiple code generators for various machines. The various
validation and verification tools operate on the same form
of the intermediate language as do the code generators. The
Huston Space Center has got an IBM version of exactly the
same program written in XPL, and the front end is identical.
They have code generators for various machines. The
reflections that we have so far are that in an Avionics
system, at least at our end, the whole thing seems to be a
very satisfactory arrangement. There was a lot of debate
yesterday about the use of the front end of the compiler for
V & V tools; 1in our experience anyway, it is a good idea.

C. McGowan: As with DOD1, there was an evaluation of existing
languages and it turned out that for their purposes they
decided it was probably better to design a new language
rather than build on an old one. To standardize on an
iggermediate language it might also require a similar
effort.

J. Bladen: And it shouid be an object of this meeting that we
make that recommendation.

C. McGowan: This can have implications on a standard DODI1
compiler. If you advocate a single source for the various

compilers that would be distributed throughout the field,
the question of field modification, and in fact the whole

61

issue of configuration control, becomes a significant
problem.

So, for example, if we had a cross compiler that ran on a
large machine, and compiled code for the 8080 instruction
set and then we did a modification to it, then that
modification would have to be sent to all the installations
that have the cross compiler.

J. Bladen: If that modification was accepted as part of the
base compiler, the central agency would be the one that
would do that. That is the way I see it. There will be
only one version of the compiler at any one time. This is
done in the Air Force now in the finance department. If a
change is required by someone out in the field they request
a change be made by a central agency. This agency decides
whether or not it is a valid requirement. They make the
change. They send out the tapes and on a certain day at a
certain time, the system is brought up so everyone across
the whole country has the same system at the same time.

K. Bowles: What language is your standard front end written in
if you have any concern about portability of that front end?

J. Bladen: The front end is written in JOVIAL and this provides
portability.

D. Loveman: What is the intermediate language? Are you
referring to just the internal representation of the
statement sequence of programs or are you including other
information such as the symbol table and flow graphs? The
idea of a standard intermediate language sounds very
desirable. I have found in practice, however, that the
design of an intermediate language is very often dependent
on the desired performance characteristics of the compiler.
For example, the decision whether to imbed information in
the intermediate language, keep it in an additional table
for reference, or recalculate it each time it is needed,
clearly depends on the required space-time characteristics
of the compiler. I wonder whether or not the technology
exists to pick a single standard intermediate language that
is going tc be usable over the whole set of potential DOCD1
compilers.

J. Bladen: We are going to have a group to study this
particular problem.

R. Glass: 1I'd like to echo this concern with the knowledge of
the internals of the existing JOVIAL J73 compiler. First of
all, the compiler is an excellent design; nevertheless the
intermediate language had a design goal of being totally
independent of the symbol table, and in fact that design
goal failed. 1It's also true that for some code generators
there are machine-dependent characteristics which still
require front end changes. What I'm trying to say is that
there is concern about the level of our understanding of
good intermediate languages and proper techniques for using
them. It is probably premature to standardize here. We are

62

getting close, and I think we have learned a lot. I think
that the J73 compiler is an excellent example of the
directions we have to be pointing toward, but I don't think
we know enough to standardize.

J. Bladen: First, I want to answer the first thing you said and
that is that, yes, the symbol table is part of the
intermediate language. That's something that was an
oversight on my part. There are things besides intermediate
language which should be kept around in order to deparse to
bring back the source code, but thecc are implementation
issues that I'm not really addressing at the moment. What I
really would like to address is whether or not the
technology is there for a standard intermediate language.

As far as your statement of whether or not the best
intermediate language is now available, I don't see how
that's possible. But the best DOD1 language is not
available. However, there are sufficient intermediate
languages. We should choose the best of the sufficient
intermediate languages and say this is the one we are going
to use. Either that or there is going to be a proliferation
of intermediate languages just like there is a proliferation
of FORTRAN languages.

D. Loveman: My experience has been that the design of an
intermediate language is a function of three things: the
source language for which the compiler is being constructed;
the performance constraints imposed on the compiler; and
the target machine architecture. We will have a standard
language, but do we have a standard sct of constraints on
the compiler and do we have a standard machine architecture?
I don't think - .. Even if you pick a standard
representation form like a tree structure or QUADs, you know
what the intermediate language is going to look like but the
detaills of its implementation will depend heavily on items
other than the language.

R. Glass: 1I'd just like to throw out one other thing related to
intermediate langusges. And that is, the possibility that a
standardized intermediate language may result in hardware
which executes that IL, and makes trivial the tasks of
writing code generators off that IL and/or interpreters for
that IL. I think there is a lot of down steam fallout from
standardizing on IL. That ought to be taken into
consideration. Once the standard is established, a lot of
stuff gets frozen and locked into that standard.

C. McGowan: Code generation is one aspect of prcgram
representation with which we are concerned. Mention was
made of doing editing, and editing not just as on source
text, but on something that reflected the program structure.
So the kinds of compiletime operations that we want to do on
an internal representation of a program besides code
generation would have an impact on what would be that
internal representation.

[R. Sites now begins his presentation.)

63

R. Sites: I am going to talk a bit about implementation for
PASCAL and I think that may settle some of the questions
in your minds and quite likely will trigger more
questions. This is the general structure of portable
PASCAL compilers stemming from the P2 portable compiler
of Wirth, et al. [Sites refers to a prepared viewgraph.]
They wrote the PASCAL compiler in PASCAL in about four or
five thousands lines of PASCAL code that compiles from
source to an intermediate pseudo-code. Then there are
separate translators that take the pseudo-code anrd
generate code for specific machines. Existing things
that have been running in the field for over a year are
code generators for the IBM 370, the CDC 6600, the
CkAY-1, the PLDFP-10, and the UNIVAC-1100 series. 1It's a
very wide spread single compiler base of this sort that
is filtering to the University system, and to some extent
the commercial world.

Another possibility, once you compile to an intermediate
pseudo-code, is not to compile that to machine language :
for a particular machine but to interpret the pseudo-code !
directly. That's an approach that Ken Bowles used in !
UCSD PASCAL by writing a small interpreter for the DEC
LSI-11 that will interpret pseudo-code directly.
Rewriting the interpreter for another micro such as the !
8080 (which they also have done and have had running for
quite a while) that interprets the bit-for-bit identical
pseudo-code, can be up and running on an 8080 in a few
months.

[Sites proceeds to give an implementation-level slide
: presentation of the UCSD PASCAL system. Details are
3 omitted here.]

P. Eastwood: You emphasize that choosing a very simple assembly
language stack machine may make the compiler portion easy.
Did you find later that that made the code generators
harder?

k. Sites: No. Any reasonable code generator is going to take a !
bunch of temporary names and throw out some of them and
remap the rest into general registers, index registers,
accumulators, etc. 1 feel that the choice of forms here
between stack machine or accumulator machine or 3-address
register machine, is really a red herring discussion.
Whatever form you pick, it's not going to be perfect for
everybody. But if you do a decent job, it's going to be
good enough for everybody. That's the best you can do.

K. Bowles: 1In our implementation on the microcomputers, we are
not going through assembly languge, we are interpreting a
compressed P-code and the whole things hangs entirely on the
idea, if possible, to express that P-code in a form which
can be depressed efficiently so that one can get a single
pass compiler on to the microcomputer. Our experience with
these micros and various others' experience suggests that we
don't yet know enough about the process of expressing that
P-code to think that it would be possible to standardize it.

e e e) i it bt stk m—d

] 64

' R. Sites: I agree with that. I will later take the position
that DOD1 should not in the first two years standardize the
P-code. It should rather take the position that as the
problem is understood, one of the goals is to standardize on
a P-code that everyone is happy with.

R. Glass: Doesn't this approach to an assembler like P-code
make it difficult to do global optimization?

R. Sites: I think I would like to have people stop asking
questions for about 10 minutes. I want to give you a very
specific instance of P-code. It is the assignment statement
A[I] & B+C.

[Sites proceeds with a very detailed discussion of the
P-code generated by this assignment statement. The
technical details presented are irrelevant to the general
level of discussion which follows.]

[Unknown]: Doesn't your design imply that your compiler, which
is common among all machines, has built-in logic that
decides what variable is going to go into what type class.
You have to assume that there's going to be a memory
hierarchy, and enough compiler logic to decide what goes
where.

R. Sites: That's true. In order to do a decent job for a class
of machines, the front end assumes that there is a memory
hierarchy and has a small constant describing how big each
of the hierarchies is, the order of the hierarchy, and ;
essentially a small cross reference table that says integers
can go into these places, reals can go into these places,
addresses can go into these places, etc. It's not a hard
thing to capture and it's not a hard thing to change.

C. Taylor: What prevents you from generating a new machine
architecture and having the same problem? That is, having
to have the compiler understand this new machine, etc.

R. Sites: There is no answer to that argument. Whatever
compiler design anyone in this room presents, you can find
yourself a machine that that design would generate poor code ‘-
for. Necessarily, as new machines are invented which are :
radically different from old machines, there will have to be
changes all through this. What I am arguing for is the
decomposition, which is in fact reasonable and tracks at
least an existing set of machines and ones that are on the
horizon for the next five years.

C. Taylor: That appiies to changes to the compiler. The
compiler has to understand what such changes mean to the
computer architecture for the next five years.

R. Sites: Tnat's not completely true. You can take out the
whole thing about the memory hierarchy so long as you are
willing to put up the code which only uses main memory on a
machine that does have a hierarchy.

65

C. Taylor: It seems like you're picking particular data
structures, and you are forcing those data structures on the
machine, while those data structures may not be the best for

E the particular machine.

R. Sites: But it can't be the best for a particular machine.
All I'm arguing 1is that they are reasonable enough and that
so long as you don't lose any information, you can have a
code generator which rips all that back out and puts
something else back in. I'm going to talk about remapping
storage in a minute.

1

E P. Eastwood: We have a standard compiler which uses parameters
' for different classes of machines. We felt that we didn't
have as many copies of the compiler in the field as we did
code generators, and that it was maintained better.

D. Loveman: I think the objective here is not to describe the
best possible architecture for the ultimate compiler for a
given machine, but, rather, to propose an
architecture for a good compiler for a variety of different
machines. And the question I would like to ask concerns the
role of, or perhaps the conflicts between, the idea of a
single standard good compiler for a variety of different
machines, versus an outstanding compiler for a particular
machine. Do you want to have the ultimate compiler for each
machine you are going to have? Just how important is
optimization for this language on a particular machine?

R. Sites: The idea of having anything even vaguely related to
the target is to have an abstraction that would cover many
targets. You can have very narrow abstractions which cover
exactly one target, or very wide abstractions which cover
many. But there is some judicious tuning available.

Clearly you can bypass the optimizer if you don't need it.
The optimizer at this level, I believe, should have
responsibility for doing global machine independent
optimizations. Anything you do to reduce the amount of
computation treating the pseudo-code as an assembly language
for a machine, anything you ao to remove an instruction from
that block of code, always wins on all machines. Anything
you do to take five instructions and move to a less
frequently executed place, always wins on all machines.

M. Wolfe: That's not true. 1 was having discussions with Dave
Loveman this morning, and optimization is always dependent
on the target machine. For example, even if you take out
common sub expressions from a loop, what happens when I go
into a vector machine? Well, in a loop you may get two
instructions for what could be done on the vector machine by
one instruction.

R. Sites: 1 don't foilow that, but I'd like to talk to you
about it at the break. Your option always, of course, is
not to optimize anything, if you are going to be better off
that way. If you eventually find that you need to build
another optimizer box that does different things. fine.
What I am trying to propose is a structure which at least

66

works for current machines and the current PASCAL language.

M. Wolfe: My point wasn't saying that the structure is not
good; the point is an optimizer is not really independent
of the target machine.

R. Sites: The place I'm coming from is I'm willing to not do
some optimization which will be applicable to one particular
machine only. I'm willing to generate code which is quite
reliable but a little bit slower than it possibly could be
for the alternate machines. And if you have some things
which belong to a particular machine only, you do some
optimization for that machine only at the P-code to machine
code translation level. If you've got too wide a variety of
machines or this whole structure grows for fifteen years, it
will eventually fragment too much, and you need to start
over. We haven't reached that point yet.

[Sites proceeds to give some specific details of global,
machine-independent optimizations that may be applied to
P-code.]

From building this we have found that a pseudo-code is 4
sufficient; 1it's not the perfect interface for building an
optimizer, but it's good enough. We also found that there
were a few things missing. We found that in the current
definition of P-code, when you do an array subscript there
is nothing that talks about the length of the array. With
lengths missing, there is no way of telling if an indirect
store into an array could possibly corrupt some other
variable. So this is still an evolutionary process of
discovering exactly what information you need and what
constitutes perfect knowledge. But it has been a
surprisingly good base.

The final code that we get out will be noticeably better
than the unoptimized code, but it will never match the
perfect possible code that you get from a heavily
intertwined optimizer in assembly language for some specific
machine. However, one of the things we have to look at is
that software design cycles are fairly long now, perhaps
five years, while some hardware lifetimes, or at least
design cycles of new products coming out, are down to the .
two to three year range. So it is not clear to me that you p
ever want to build a really heavy optimizer for a particular
machine, because that machine architecture's lifetime may be
shorter than the design time to write the compiler.

R. Glass: I have to take serious issue with that position in
the DoD computer envircnment. Our experience at Boeing
Aerospace is that we have to stuff a lot of code into too "
little machine over and over again. A high quality .
optimizer is an absolute requirement.

R. Sites: 1 agree with that. in that environment the lifetime
changes of a particular architecture are much slower, and i
I'd like to turn that arcund. Why are they so slow? Is it
because technology in this country can't build new aerospace

D.

67

computers? Or is it because software is so locked in that
you can't afford to use any other machine?

Glass: It is primarily the latter.

Sites: Things will never change as quickly as they could,
but to the extent that you can move to new machines as they
become obviously attractive, I expect those cycles to get a
bit shorter. 1I've moved programs from the LSI-11 to the
CRAY-1 written in PASCAL using this compiler system. It
really works. Ken Bowles has a PASCAL system interpreter
running on the LSI-11 and an interpreter for the 8080. The
compilers for the two machines are essentially identical.

Glass: I know a guy--a top-quality guy--who wanted to rehost
a PASCAL compiler from one version of a PDP-11 to another.
It took six months to do it. We all have stories that bad.

Sites: Advantages of all this for DOD? First, you have to
build an initial version of DOD1. You build a very simple
parser that doesn't try to do anything fancy at all, since
you have a language that is still stablizing. Then you
build brutally simple code generators. You build ro
optimizer to get off the ground. You can separately verify
or prove or certify the front end and various back ends.
Certify more than one front end if you need to; verify that
they generate the identical P-code sequence or logically put
out equivalent ones. When you go to the new target machine
you are looking at half the work of writing a brand new
compiler.

McGowan: If one were to use this approach for DOD1, there
are features such as being able to synchronize on a real
time clock, or schedule concurrent processes, that might
influence this P-code.

Sites: I would expect the things you named would have a very
small influence, that there would be a couple operaters or
perhaps more standard subroutine calls for reading the real
time clock or starting a task. I would not expect that they
would in fact affect variables allocated within a particular
module.

McGowan: Take for example concurrent PASCAL; what changes
would you have to make?

Sites: Other than a standard subroutine call, to start up
the new task, none. I take that back. There's one other
thing having to do with side-effects. 1In both that
environment and in the environment where you have a language
in which you can say, "this variable matches this machine
register," you need to be able to tell an optimizer "this
variable could change at arbitrary times and, hence, con''t
use it in common subexpressions." That's the one piece of
information I can think of that would be needed in addition
in a multi-task environment.

Loveman: LCoes the CRAY=-1 code-generator generate vector

68

instructions?

Sites: Currently no. That's the second year of my research
proposal. And it may turn out that the P-code is not the
best representation, but if it's a sufficient
representation, I'11 be happy.

Loveman: It seems that in the design of this compiler, one
of the main criteria was exceedingly clean interfaces
between the various pieces of the compiler. I think you pay
something for that. One of the things you pay is the
necessity of gathering certain types of information at
multiple different places within the compiler. It seems,
for example, that you need certain types of flow information
in the compiler to help you do memory allocation.

Sitea: This particular compiler does no flow analysis
whatsoever. The compiler takes declarations as they come in
and allocates storage. It takes the statements as they come
in and it generates code. It's very simple.

Loveman: But if you want to do cunning memory allocation,
you need flow information.

Sites: If you want to do cunning memory allocation, you
probably should not do it there. The thing I was speaking
of before is that you could rearrange the allocation later.
So long as you have the information about what the objects
are and which ones must be related to each other and which
ones are independent objects, then you can resort them so
that, for example, the first 16 are more heavily used.

Loveman: Okay. But you need flow information at least for
the optimizer and for codegenerzation.

Sites: You need flow information for the optimizer and my
contention here is that the codegenerator should do no flow
analysis. Flow analysis is a very difficult thing which
traditionally is messed up and I feel to have a reliable
system, you need to do it exactly in one place.

Loveman: But then how do you dc sophisticated register
allocation without flow analysis? Then that's not a machine
dependent optimization.

Sites: In the output of the optimizer we currently have
running, when it does things like allocate common sub
expressions or move an expression out of a loop, what it
does is it generates assignments to and fetches from a
series of names which are intended to be mapped into machine
registers if you have any. And those names are ordered so
that name O is used very heavily, name 1 less heavily etc.
That is by nc means a perfect register allocation algorithm.
But it's fairly decent, and it maps into the huge variety of
target machines. If you have two registers available, you
put temp O and temp 1 into the registers and it does a
decent job. If you have 16 available, you put the temp O
through temp 15 into registers.

s

69 4

o

D. Loveman: How do you minimize the number of registers?

R. Sites: That's the job of the optimizer because the
optimizer's the only place that has the flow analysis i
information to do the mapping correctly.

D. Loveman: The point that I'm making here is that there's a

trade-off between having exceedingly clean interfaces

' between the different parts of the compiler, and having a
well-engineered compiling machine with systematic
information being passed through in a variety of different

, cunning ways. And I think this [former] approach is a very 1
interesting approach to think of as a first implementation
for a good compiler, but I don't think this is a very good
approach for an ultimate compiler.

I want to get back to the question I sort of go‘ at before
which is the role of an ultimate optimizer for a language
like DOD1. Perhaps we're raising questions about program
transportability -- how important is program 1
transportability? You can argue the transportability of
tools written in DOD1 may well be quite important. But for
the programs that are in fact written in DOD1 for embedded
systems, how important is it when these programs must be
highly optimized? Is it not liable to be the case that you
will know at some point in time that you are in fact
compiling for this computer which is going to be in the
nosecone of a missile for the next ten years? That guidance
program is never going to change and in fact what jou may
want is to have the best possible optimization yocu possibly
can applied to that program to help make it fit into that
particuiar environment.

Another somewhat related point is the idea of the ultimate
optimizer. The technology that exists for doing analysis
and optimization on programs is currently well beyond what
is in fact implemented in production optimizers. The main
reason is the trade-offs on just how much time you want to
spend in the compiler doing optimization versus the benefit
you're going to get from doing an optimization. Embedded
computer applications may just be the case where you're
willing to say that one version of a compiler you want to
have is the one where compiletime is completely irrelevant
and what you want out is the best possible code you can get
in the state of the art.

R. Sites: I might read you the DOD requirements - they're not
quite that extreme. If those are your requirements, you
should be writing in assembly language perhaps.

[Scattered disagreements.]

K. Bowles: You talk about optimization as if it was one animal
and yet, like in this missile example, there are at least 2
different optimizations you might wish tc apply to different
parts of your code. 1Is it space or is it time? Or do you
want to be able to partition your code and optimize for one
purpose in one area and for the other purpose in a different

area, and so on?

Loveman: Green [the language] lets you say that a procedure
may or may not be compiled in-line. The way that it's
phrased in Green, you have to commit yourself when you write
the procedure as to whether or not it goes in-line, and
that's a commitment for all calls of that procedure. And
based on what you're saying, you'd probably want to have a
facility which says for this call, which happens to be
inside four doubly nested for loops, you want to expand
in-line. And every place else you don't, because you want
to save space. So there's a trade-off of language
facilities for talking to the optimizer.

Sites: The optimizer built in CRAY-1 in fact will merge
procedures in-line under appropriate circumstances.

Loveman: Can the programmer hint at what those circumstances
are?

Sites: Currently no because PASCAL doesn't allow any of
that.

Loveman: I agree very strongly with the idea that runtime
information about the real honest to goodness program should
be fed back into the compiler. I can think of two ways of
doing it, neither of which is particularly attractive. One
is, keeping in mind the idea of the program development
system, what you want to have is the result of this analysis
fed back to the program development system and catalogued
with the program so that the information is available
automatically the next time the program is compiled. There
are obviously certain problems involved with that. The
other is by means of programmer introduced statements into
the procedure giving some of this information. That has
always been a problem. So you find yourself either stuck
with a very elaborate system or the requirement that the
procedure be modified by the inclusion of the information.

R. Sites: No, you don't have to be elaborate, there's middle

J.

ground. You can supply a very simple tool which generates
statement counts. The tool that generated those counts I
wrote in about a week for the CRAY-1 PASCAL compiler. Once
you capture those counts on a file as ASCII characters you
don't have to build elaborate tools to catalogue them and
save them and associate them with a particular module and a
particular date. All you have to do is have whatever
optimizer or whoever's going to use them be able to read a
file, and then for your starting place you have programmers
say this is the file that has the counts. As you build more
elaborate tools that do some of that bookkeeping for you,
fine. But don't start off with the whole thing so top-heavy
that it crashes under its own weight before you do anything
useful at all. Build the simple, straight-forward tools,
and use them a bit.

Bladen: 1I'd like to address a statement you made about the
requirements within the environment that this system will be

71

used in. As long as it's used in missiles, it's an absolute
requirement that it be retargetable. That's the most
important thing. As long as we are buying competitively,
which is hopefully the American way, we're going to have to
be able to pull out one guy's computer and put another

computer into the system.

E. Nelson: There's ancother reason for having portability of the
software in that as you get into more and more of the
system, there are going to be common parts that may be used
in a different system, and it may reduce the software quite
a bit if you can reuse these parts in another system.

[The line of dicussion now moves towards the topic of
separation of tools versus inclusion of many capabilities
into a single "compiler". R. Taylor makes the following
statement which seems to meet with more or less
unannamous approval.]

C. Taylor: 1I'd just like to react a little to Susan Gerhart's
comment of yesterday. I liked her idea that the common
notion of compiler is not very useful. Rather, we should
have parts which fit together very well, and if you wish to
use them together then that's fine and good; just don't
build me a monolith, and don't require a monolith.

[The topic of discussion now switches to the desirability
of standardizing source code formats, both those output
by the compiler in the listings and those used by the
programmers. The topic of how statement numbers should
relate to source statements is then bantered about at
some length. Crocker makes the following well accepted
remark toconclude this latter subdiscussion.]

S. Crocker: 1I've been fortunate to be programming in Interlisp
for about four years, and I hope to never see another line
number!

[The discussion moves now to the area of standardized
error message formats. Again, Crocker supplies some
well-needed wisdom to aid the generally disorganized
discussion.]

S. Crocker: 1It's a question of specific cases. It is clear
that you can't tell how much storage is required [for error
messages] until you lock at what the object machine is going
to be. So running out of storage, for example, is a kind of
thing that is nct going to be detectable at parse time. But
I think the idea of having a large class of syntax and .
semantic errors caught in a standard way with standard

’ diagnostics is an excellent improvement on the current state
of the artv. Let me frame it as a motion. I hereby move
that s part of the definition of the language there be
standardized diagnostics.

D. Loveman: Stancardize all user interfaces with the language?
Forms of listings, forms of outputs, etce?

72

5. Crocker: Yes, in fact 1 have the following philosophy.
There are people who like to put things on different lines
and there are pecople who like to control their own level of
indentation, and do their own prettyprinting by hand. In
terms of sharing code among people, I believe it is a
pusitive benefit to have the system decide what the format
is, i.e., Lo have a standard system of prettyprinting.
(This moves into a difterent area, bul as lonyg as we're
talking about user interfaces.) People who are very set in
their ways about how much indentation they are going to have
and where they are going to put the parenthesis, and all
that sort of thing, actually do a slight disservice in terms
of making it more difficult to communicate code to other
people. They also spend a lot of time doing that which 1is
unnecessary. So in terms of moving in fthat direction, I

F wudld say yes.

D. Loveman: After the great philosophical debate about how
terrible his style is and about how wonderful my style is, I
would rather the two of us program in the same style
whatever 1t is.

S. Crocker: You can't argue with me; I want your style. 1I'd
much prefer to adopt your style so that you and I can read
each other's code. 1 have less concern about where these
things go. In fact, as I find that I have the opportunity
to reason it out, I spend an enormous amount of time playing
with it and deciding on it. 1In fact, it doesn't make much
difference. What matters is that I can accommodate quickly
to a standard set of specs. y

[Scattered disorganized discussion continues for a brief
period after which Wolfe closes the session with a short !
summary which reiterates some of the major topics
discussed.]

Session AA: Supporting 2 Flourishing Lanquaage Culture
Peter Weaqner, Chaltr

[f. Wegner has summarized his orpening remarks in the five
page report which follows immediately.]

74

Language Design and Evaluation Studies

Technical Note 7: Supporting a Flourishing Language Culture (Chairman's remarks,

DOD Higher-Order Language Environment Workshop, June 1978; edited version, October 1978)

The basic idea behind this session is that a programming language provides a
basiin for the development of a literature of programs and a culture associated with
it comuunity of users. This happens with natural languages over a period of many ’
rencrations, and with programming languages over the space of a few y<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>